0% Complete
English
صفحه اصلی
/
سی و دومین کنفرانس ملی و دهمین کنفرانس بین المللی مهندسی زیست پزشکی ایران
Leveraging Normal White Matter Hyperintensity Context for Enhanced Pathological Segmentation via Multi-Class Deep Learning
نویسندگان :
Mahdi Bashiri Bawil
1
Mousa Shamsi
2
Ali Fahmi Jafargholkhanloo
3
Abolhassan Shakeri Bavil
4
1- Tabriz University of Technology (Sahand)
2- Tabriz University of Technology (Sahand)
3- University of Mohaghegh Ardabili
4- Department of Radiology, Imam Reza Hospital Tabriz University of Medical Sciences Tabriz, Iran
کلمات کلیدی :
White matter hyperintensities (WMH)،deep learning،medical image segmentation،FLAIR MRI،multi-class classification،U-Net،pathological segmentation،neuroimaging
چکیده :
White matter hyperintensities (WMHs) on FLAIR MRI are critical indicators of cerebrovascular dysfunction associated with elevated risks of stroke, dementia, and death. Current automated segmentation methods suffer from false positive detection in periventricular regions, failing to distinguish normal or aging-related hyperintensities from pathologically significant lesions, which reduces clinical applicability and diagnostic accuracy. This study investigates whether training deep learning models to explicitly differentiate between normal and abnormal WMH improves pathological WMH segmentation performance compared to traditional binary approaches. Four state-of-the-art architectures (U-Net, Attention U-Net, DeepLabV3Plus, Trans-U-Net) were evaluated across two training scenarios using 1,974 FLAIR images from 100 MS patients with expert-annotated ground truths. Scenario 1 employed binary training (background vs abnormal WMH), while Scenario 2 utilized three-class training (background, normal WMH, abnormal WMH). Statistical analysis included paired t-tests and Cohen's d effect size calculations. U-Net achieved the most substantial improvement in Scenario 2 with 55.6% increase in Dice coefficient (0.693 vs 0.443) and 131% precision enhancement (p < 0.0001, Cohen's d = 0.971). Traditional CNN-based architectures demonstrated larger effect sizes than transformer-based models. The three-class training approach significantly enhances pathological WMH segmentation while maintaining clinical feasibility, providing a validated framework for improving automated neuroimaging tools' diagnostic utility.
لیست مقالات
لیست مقالات بایگانی شده
هوشمندسازی زنجیره تأمین با بهرهگیری از الگوریتمهای هوش مصنوعی
غلامرضا جمالی - محمدهادی نامور
مقایسه تطبیقی پیشینه حاکمیت شرکتی در ایران و سایر کشورها
جمال خراسانی
Non-Invasive Detection of Atherosclerosis and Aneurysm via Electrical Impedance Spectroscopy: A Finite Element Simulation Study
Shaghayegh Shokri - Rasool Baghbani - Masoomeh Ashoorirad
3D Printing of Novel Bioactive Polycaprolactone Nanocomposites for Prospective Osteoporotic Bone Defect Engineering
Fateme Fathi - Hengameh Zolala - Farhad Esmailzadeh - Shohreh Mashyekhan - Irinia Kurzina
Parkinson’s Disease Classification Using EEG and a Hybrid EEGNet–LSTM Architecture
Pouya Taghipour Langrodi - Amirsadra Khodadadi - Ali Sadat Modaresi - Mohammad Ahadzadeh - Mostafa Rostami - Sadegh Madadi
بررسی تاثیر انعطاف پذیری مالی بر رابطه بین مدیریت ریسک و اجتناب مالیاتی
علیرضا عظیمی ثانی - رضا پورتقی
تشخیص بیماری MS با استفاده از EfficientNet-B0 و CycleGAN بر پایه نقشههای ضخامت شبکیه
محبوبه سبزه یان - مریم سبزه یان - ماندانا سادات غفوریان - امین نوری
سواد مالی و رونق گردشگریT مطالعه موردی گردشگران شهر یزد
محمدعلی فیض پور - مهدیه پیروی - ریحانه بابائی - جمال برزگری خانقاه
بررسی کاربرد و چالش های هوش مصنوعی در مدیریت لجستیک بنادر
ایمان حق شناس - دامون رزمجویی
مروری بر روشهای شناسایی و تشخیص غیرمستقیم لیتولوژی سازند با تاکید بر روشهای هوش مصنوعی
نگین فروزان - خالد معروفی - سید شهاب طباطباییمرادی
بیشتر
ثمین همایش، سامانه مدیریت کنفرانس ها و جشنواره ها - نگارش 42.4.1