0% Complete
English
صفحه اصلی
/
سی و دومین کنفرانس ملی و دهمین کنفرانس بین المللی مهندسی زیست پزشکی ایران
Leveraging Normal White Matter Hyperintensity Context for Enhanced Pathological Segmentation via Multi-Class Deep Learning
نویسندگان :
Mahdi Bashiri Bawil
1
Mousa Shamsi
2
Ali Fahmi Jafargholkhanloo
3
Abolhassan Shakeri Bavil
4
1- Tabriz University of Technology (Sahand)
2- Tabriz University of Technology (Sahand)
3- University of Mohaghegh Ardabili
4- Department of Radiology, Imam Reza Hospital Tabriz University of Medical Sciences Tabriz, Iran
کلمات کلیدی :
White matter hyperintensities (WMH)،deep learning،medical image segmentation،FLAIR MRI،multi-class classification،U-Net،pathological segmentation،neuroimaging
چکیده :
White matter hyperintensities (WMHs) on FLAIR MRI are critical indicators of cerebrovascular dysfunction associated with elevated risks of stroke, dementia, and death. Current automated segmentation methods suffer from false positive detection in periventricular regions, failing to distinguish normal or aging-related hyperintensities from pathologically significant lesions, which reduces clinical applicability and diagnostic accuracy. This study investigates whether training deep learning models to explicitly differentiate between normal and abnormal WMH improves pathological WMH segmentation performance compared to traditional binary approaches. Four state-of-the-art architectures (U-Net, Attention U-Net, DeepLabV3Plus, Trans-U-Net) were evaluated across two training scenarios using 1,974 FLAIR images from 100 MS patients with expert-annotated ground truths. Scenario 1 employed binary training (background vs abnormal WMH), while Scenario 2 utilized three-class training (background, normal WMH, abnormal WMH). Statistical analysis included paired t-tests and Cohen's d effect size calculations. U-Net achieved the most substantial improvement in Scenario 2 with 55.6% increase in Dice coefficient (0.693 vs 0.443) and 131% precision enhancement (p < 0.0001, Cohen's d = 0.971). Traditional CNN-based architectures demonstrated larger effect sizes than transformer-based models. The three-class training approach significantly enhances pathological WMH segmentation while maintaining clinical feasibility, providing a validated framework for improving automated neuroimaging tools' diagnostic utility.
لیست مقالات
لیست مقالات بایگانی شده
تشخیص زودهنگام وسواس فکری از دادههای متنی شبکههای اجتماعی با استفاده از مدلهای زبانی بر پایه ترنسفورمر
سمیه حسینی زنوزی
Document Clustering Using Deep Pre-trained Language Model Embeddings for Information Retrieval
Mahdi Mohammadiha - Mohammad Hassan Sadreddini - Morteza Mohammadi Zanjireh
Induced Pluripotent Stem Cells -Derived Dopaminergic Neuron Transplantation for Parkinson’s Disease
Atena Parsaeian - Peyvand Naserisalehabad - Najmeh Najmoddin
Implementation of Anisotropic Hyperelastic Materials in NL-SBFEM Framework: The HGO Model
Seyed Sadjad Abedi-Shahri - Farzan Ghalichi - Iman Zoljanahi Oscui
مرور نظاممند ادبیات: نوآوریها و چالشهای مدیریت زنجیره تأمین جهانی در عصر دیجیتال:نقش فناوریهای پیشرفته و استراتژیهای تابآور
ساجده غلامی چهارطاق - نازنین عصمتی
بررسی و مقایسه روشهای تشخیص جوامع در شبکههای اجتماعی با همافزایی الگوریتمهای تکاملی و یادگیری ماشین
زهرا انیسی نسب - محمد مصلح
بازاریابی محتوایی هوشمند: بازآفرینی تعامل کاربران و برندها با کمک هوش مصنوعی در رسانههای اجتماعی
پریسا جعفری - سیروس فخیمی آذر - سلیمان ایرانزاده - حسین بوداقی خواجه نوبر
مخابرات و اینترنت اشیا: زیرساختهای نوین برای اقتصاد دیجیتال
سجاد یوسفی - مریم پورنجف - آمنه احمدی - شکوفه گرینی - حسنا هاشم بیگی
Impact of Impeller Blade Number on the Hemodynamic Performance of Specially Designed Mini VAD
Nasser Alizadeh - Hanieh Niroomand-Oscuii - Farzan Ghalichi
بررسی تأثیر بالقوه فناوری بلاکچین بر کاهش مدیریت سود در شرکتهای بورسی: یک تحلیل مبتنی بر نگرش کارشناسان و متخصصین
ضرغام داداش زاده
بیشتر
ثمین همایش، سامانه مدیریت کنفرانس ها و جشنواره ها - نگارش 42.5.2