0% Complete
فارسی
Home
/
سی و دومین کنفرانس ملی و دهمین کنفرانس بین المللی مهندسی زیست پزشکی ایران
Predicting Sleep Efficiency and Apnea Index Using ECG-Derived and Sleep Quality Features: A Machine Learning Approach
Authors :
Mahla Khodaverdi
1
Raheleh Davoodi
2
1- دانشگاه شهید بهشتی تهران
2- دانشگاه شهید بهشتی تهران
Keywords :
Sleep efficiency،Apnea index،ECG،Machine learning،Feature selection
Abstract :
Sleep quality and obstructive sleep apnea profoundly influence cardiovascular function, cognition, and overall well-being, yet conventional monitoring approaches remain largely invasive or cumbersome, underscoring the imperative for streamlined, non-invasive alternatives. Herein, we present a machine learning framework that synergistically integrates electrocardiogram (ECG)-derived features with sleep quality metrics to forecast sleep efficiency and apnea-hypopnea index (AHI). Drawing upon the ECSMP (A Dataset on Emotion, Cognition, Sleep, and Multi-Modal Physiological Signals) dataset—encompassing recordings from 89 healthy participants—we curated a subset of 33 subjects whose data exhibited complete and unimpaired capture across all ECG-sleep modalities, thereby ensuring analytical fidelity; incomplete records from the remaining participants, attributable to recording artifacts or procedural inconsistencies, were judiciously excluded to uphold data integrity. From these selected recordings, 22 ECG-derived and sleep quality features were extracted and subsequently refined through recursive feature elimination (RFE) to mitigate redundancy and enhance predictive salience. We evaluated three regression models—Ridge Regression, Random Forest, and Gradient Boosting—employing subject-based 5-fold cross-validation to foster generalizability across individuals. For sleep efficiency, Ridge Regression attained a mean R² of 0.8734, indicating a high degree of explained variance; by comparison, Random Forest registered an R² of 0.2756 for AHI, which underscores the formidable obstacles in modeling sporadic apnea episodes amid constrained empirical resources. Feature importance scrutiny further illuminated wake hours and deep sleep ratio as preeminent correlates for sleep efficiency, complemented by deep sleep ratio and QRS amplitude for AHI. Collectively, this framework lays a promising foundation for non-invasive, individualized sleep monitoring, offering reliable estimates of sleep efficiency and preliminary insights into apnea patterns, albeit within the constraints of a modest sample size.
Papers List
List of archived papers
بررسی میزان آشنایی با Chat GPT در میان دانشجویان دانشگاه تبریز
میثم معدنی پور - سید کمال الدین یکتا
تاثیر ویژگی های کمیته حسابرسی و حسابرس داخلی بر به موقع بودن گزارشگری مالی
غلامعلی شریفی
Effect of ph changes on thermal and mechanical properties of polyacrylamide hydrogel using molecular dynamics simulation
Narges Karimzadeh Dehkordi
ارزیابی ریسک ملی و فراملی ( ریسک غیر مالی) (مطالعه موردی درکرواسی)
شبنم بالازاده قره باغی - فرهاد خداکرمی - امیرحسین باقری - مهتاب رنجبران
Toward Precision Psychiatry: Differentiating Depression and Psychosis Using EEG-Based Machine Learning Models
Vahid Asayesh - Mehdi Dehghani - Majid Torabi - Sepideh Akhtari-Khosroshahi - Maedeh Akhtari-Khosroshahi - Sebelan Daneshvar
Metal-Organic Frameworks: A Promising Class of Materials for Next-Generation Antibacterial Drug Delivery Systems
Shaghayegh Kohzadi - Zahra Mohammadi
ترکیب سیگنالهای EEG و ردیابی چشم برای توانبخشی به بیماران ضایعه نخاعی
امیررضا احمدی
کاربرد بلاکچین در اینترنت اشیا :فرصت ها و چالش ها
سجاد یوسفی - مریم پورنجف - فاطمه جستجو - مهلا شریفی
Multi-View 2.5D Attention U-Net with 3D Fusion for Efficient Stroke Lesion Segmentation from T1-Weighted MRI
Fatemeh Salahshourinejad - Kamran Kazemi - Negar Noorizadeh - Mohammad Sadegh Helfroush - Ardalan Aarabi
The role of artificial intelligence in linking data-driven human resources with sustainable business branding
Baharak Yadegar Jamshidi - Hossein Bodaghi Khajeh Noubar
more
Samin Hamayesh - Version 42.5.2