0% Complete
فارسی
Home
/
سی و دومین کنفرانس ملی و دهمین کنفرانس بین المللی مهندسی زیست پزشکی ایران
Predicting Sleep Efficiency and Apnea Index Using ECG-Derived and Sleep Quality Features: A Machine Learning Approach
Authors :
Mahla Khodaverdi
1
Raheleh Davoodi
2
1- دانشگاه شهید بهشتی تهران
2- دانشگاه شهید بهشتی تهران
Keywords :
Sleep efficiency،Apnea index،ECG،Machine learning،Feature selection
Abstract :
Sleep quality and obstructive sleep apnea profoundly influence cardiovascular function, cognition, and overall well-being, yet conventional monitoring approaches remain largely invasive or cumbersome, underscoring the imperative for streamlined, non-invasive alternatives. Herein, we present a machine learning framework that synergistically integrates electrocardiogram (ECG)-derived features with sleep quality metrics to forecast sleep efficiency and apnea-hypopnea index (AHI). Drawing upon the ECSMP (A Dataset on Emotion, Cognition, Sleep, and Multi-Modal Physiological Signals) dataset—encompassing recordings from 89 healthy participants—we curated a subset of 33 subjects whose data exhibited complete and unimpaired capture across all ECG-sleep modalities, thereby ensuring analytical fidelity; incomplete records from the remaining participants, attributable to recording artifacts or procedural inconsistencies, were judiciously excluded to uphold data integrity. From these selected recordings, 22 ECG-derived and sleep quality features were extracted and subsequently refined through recursive feature elimination (RFE) to mitigate redundancy and enhance predictive salience. We evaluated three regression models—Ridge Regression, Random Forest, and Gradient Boosting—employing subject-based 5-fold cross-validation to foster generalizability across individuals. For sleep efficiency, Ridge Regression attained a mean R² of 0.8734, indicating a high degree of explained variance; by comparison, Random Forest registered an R² of 0.2756 for AHI, which underscores the formidable obstacles in modeling sporadic apnea episodes amid constrained empirical resources. Feature importance scrutiny further illuminated wake hours and deep sleep ratio as preeminent correlates for sleep efficiency, complemented by deep sleep ratio and QRS amplitude for AHI. Collectively, this framework lays a promising foundation for non-invasive, individualized sleep monitoring, offering reliable estimates of sleep efficiency and preliminary insights into apnea patterns, albeit within the constraints of a modest sample size.
Papers List
List of archived papers
تحلیل کاربردی الگوریتم کلونی مورچگان چندهدفه در حل مسائل بهینهسازی چندهدفه
ملیحه نیک سیرت
Microfluidic Generation of Core-Shell Breast Tumor Spheroids for Evaluating Dose-Dependent Responses to Quercetin
Fatemeh Zarei - Mohammad Hashem Molayemat - Amir Shamloo - Mohammad Mehdi Sadeghian
Cerium-Based MOFs Incorporated into Zwitterionic Polymers for Disruption of Bacterial Biofilms: Toward Next-Generation Antimicrobial Surfaces
Helia Heydarinasab - Vahid Haddadi Asl - Mahdi Tohidian
بازاریابی محتوایی هوشمند: بازآفرینی تعامل کاربران و برندها با کمک هوش مصنوعی در رسانههای اجتماعی
پریسا جعفری - سیروس فخیمی آذر - سلیمان ایرانزاده - حسین بوداقی خواجه نوبر
رابطه میان ماکیاولیسم و بی طرفی حسابرس
میر امید یوسفی شارمی - بهمن بنی مهد - مهدی مرادزاده فرد - بهرام همتی
Brain Network Reconfiguration During Creative Playmaking: A Task-fMRI Study
Mohammd Rezaei - Mahdi Siami - Asghar Zarei - Alireza Talesh Jafadideh
Application of Attention Mechanisms in Deep Learning Models for COVID-19 Detection and Classification from Medical Images: A Systematic Review
Jafar Abdollahi - Babak Nouri-Moghaddam - Abbas Mirzaei
بررسی عوامل موثر بر بهبود مالیات ستانی از اقتصاد دیجیتال در کشور (مورد مطالعه سازمان امور مالیاتی استان تهران)
نسار احمدی - ملک تاج ملکی اسکوئی
نقش ارزیابی عملکرد در مدیریت صحیح منابع انسانی (با تاکید بر نقش مدیران میانی)
محمد خدایی قلقاچی
بررسی سه روش شبکه های عصبی بازمانده ، شبکه عصبی کانولوشنی و مدل های حافظه کوتاه مدت در شناسایی اخبار جعلی
بهاره هاشم زاده - مجید عبدالرزاق نژاد
more
Samin Hamayesh - Version 42.4.1