0% Complete
فارسی
Home
/
سی و دومین کنفرانس ملی و دهمین کنفرانس بین المللی مهندسی زیست پزشکی ایران
Predicting Sleep Efficiency and Apnea Index Using ECG-Derived and Sleep Quality Features: A Machine Learning Approach
Authors :
Mahla Khodaverdi
1
Raheleh Davoodi
2
1- دانشگاه شهید بهشتی تهران
2- دانشگاه شهید بهشتی تهران
Keywords :
Sleep efficiency،Apnea index،ECG،Machine learning،Feature selection
Abstract :
Sleep quality and obstructive sleep apnea profoundly influence cardiovascular function, cognition, and overall well-being, yet conventional monitoring approaches remain largely invasive or cumbersome, underscoring the imperative for streamlined, non-invasive alternatives. Herein, we present a machine learning framework that synergistically integrates electrocardiogram (ECG)-derived features with sleep quality metrics to forecast sleep efficiency and apnea-hypopnea index (AHI). Drawing upon the ECSMP (A Dataset on Emotion, Cognition, Sleep, and Multi-Modal Physiological Signals) dataset—encompassing recordings from 89 healthy participants—we curated a subset of 33 subjects whose data exhibited complete and unimpaired capture across all ECG-sleep modalities, thereby ensuring analytical fidelity; incomplete records from the remaining participants, attributable to recording artifacts or procedural inconsistencies, were judiciously excluded to uphold data integrity. From these selected recordings, 22 ECG-derived and sleep quality features were extracted and subsequently refined through recursive feature elimination (RFE) to mitigate redundancy and enhance predictive salience. We evaluated three regression models—Ridge Regression, Random Forest, and Gradient Boosting—employing subject-based 5-fold cross-validation to foster generalizability across individuals. For sleep efficiency, Ridge Regression attained a mean R² of 0.8734, indicating a high degree of explained variance; by comparison, Random Forest registered an R² of 0.2756 for AHI, which underscores the formidable obstacles in modeling sporadic apnea episodes amid constrained empirical resources. Feature importance scrutiny further illuminated wake hours and deep sleep ratio as preeminent correlates for sleep efficiency, complemented by deep sleep ratio and QRS amplitude for AHI. Collectively, this framework lays a promising foundation for non-invasive, individualized sleep monitoring, offering reliable estimates of sleep efficiency and preliminary insights into apnea patterns, albeit within the constraints of a modest sample size.
Papers List
List of archived papers
تشخیص بیماری سرطان دهانه رحم به کمک شبکه عصبی با جمع آوری داده ها به صورت برخط
وحیدرضا افشین - سعیده کبیری راد - حمید ظهیری
بررسی تاثیر ورشکستگی بر رابطه بین استراتژیهای تجاری و معیارهای عملکرد شرکت (ESG)
جواد پورغفار - ایوب یغمائی علیشاه
Gait Retraining of Musculoskeletal Patients Using Deep Learning Techniques
Kourosh Alimadadi - Masoud Shariat Panahi - Morad Karimpour - Hadi Ghattan Kashani
کاربردها، تکنیکها، چالشها و ملاحظات اخلاقی و اجتماعی در سیستمهای پیشنهاددهنده
کیانا رحیمی - سمانه شیبانی
کشف قوانین انجمنی با استفاده از الگوریتم ژنتیک در جهت افزایش دقت تشخیص بیماری تیروئید
نرمین قادر - فرهاد سلیمانیان قره چپق
نگاهی جامع به تکنیک دلفی فازی و چگونگی بهکارگیری آن در پژوهشهای کیفی
قاسم رحیمی ریگی - محسن رشیدی باغی - مهنام ملایی
A Combined Time-Frequency and Common Spatial-Spectral Pattern Approach for EEG-Based Motor Imagery Classification
Reza Nejati - Hamed Danandeh Hesar
Data Mining in the Age of Information Explosion: An Intelligent Analysis Tool for Social Media
Hossein Bodaghi Khajeh Noubar - Seyed Meead Hosseini - Shiva Mohammadi
تحلیل رنگ بافت عضلانی و چربی گاو با روشهای مبتنی بر بینایی ماشین: یک بررسی جامع
فاطمه بناءهمزایی - مصطفی حشمتی
Magnetic Catheter Robot with Reduced Friction for Endovascular Minimally Invasive Access
Sina Eskandary - Mohammad Amin Salati - Rezayat Parvizi - Farhang Abbasi
more
Samin Hamayesh - Version 42.5.2