0% Complete
فارسی
Home
/
سی و دومین کنفرانس ملی و دهمین کنفرانس بین المللی مهندسی زیست پزشکی ایران
Added value of synthetic T1/T2-weighted MR images in the segmentation and staging of meningioma
Authors :
Masoud Noroozi
1
Sayna Jamaati
2
Peyman Sharifian
3
Mahsa Karbasi
4
Esmaeil Gharepapagh
5
Alireza Karimian
6
Hossein Arabi
7
Sahar Rezaei
8
1- گروه مهندسی پزشکی، دانشکده مهندسی، دانشگاه اصفهان
2- دانشگاه صنعتی شریف
3- گروه مهندسی پزشکی، دانشکده مهندسی، دانشگاه اصفهان
4- دانشگاه علوم پزشکی تبریز
5- دانشگاه علوم پزشکی تبریز
6- گروه مهندسی پزشکی، دانشکده مهندسی، دانشگاه اصفهان
7- دانشگاه ژنو
8- دانشگاه علوم پزشکی تبریز
Keywords :
Meningioma،T1/T2 Ratio Imaging،nnU-Net،Segmentation،Automated WHO Grading،Deep Learning
Abstract :
Accurate pre-operative classification and volumetric definition of intracranial meningiomas are paramount to the development of appropriate surveillance, surgical, and radiotherapeutic approaches. The traditional post-contrast T1-weighted MRI (T1c) is used clinically but is time-consuming to contour and not always available or against indications. To assess how a bias-corrected native-T1/ T2-weighted ratio (T1(n)/T2(w)) map, combined with fully automated segmentation and grading networks, can enhance meningioma work-up without gadolinium. The novelty of this research lies in the use of T1n/T2w information to generate synthetic images, replacing the need for four separate MRI sequences. The BraTS-MEN multi-centre dataset (685 scans to be segmented and 868 scans to be graded) was skull-stripped and registered to the atlas. A 3-D nnU-Net V2 was trained to segment tumors using (i) T1c and (ii) T1n/T2w volumes. The resulting masks were either presented directly or supplemented with the four mpMRI channels in a 3-D ResNet-18 to predict WHO grades 1-2. Performance was measured as Dice, IoU, accuracy, and class-based sensitivity/specificity. T1c performed the best in terms of geometry Dice (92.12 ± 4.14 %) and IoU (86.35 ± 11.3 %). The T1n/T2w map nonetheless maintained a clinically satisfactory Dice of 82.1 ± 11.68 with decreased false-positive voxels in neighboring dura. The ratio-based pipeline was superior to the T1c model in all global measures (accuracy 0.61 vs 0.427; mean Dice 0.558 vs 0.425) and the sensitivity of high-grade (>= WHO II) tumor was over twofold higher (0.70 vs 0.31). The T1n/T2w ratio map, as a gadolinium-free contrast agent, and the nnU-Net V2 in segmentation and ResNet-18 in the classifier demonstrate strength in automated grade assessment accuracy and preventing the under-treatment of aggressive meningiomas. An open-source, hardware-light, and easily reproducible workflow indicates a potential avenue of non-invasive, contrast-sparing pre-operative assessment that could be validated in a multi-institutional prospective setting.
Papers List
List of archived papers
نوآوری در مدیریت ترافیک: راهبندهای هوشمند برای مسیرهای اختصاصی اتوبوسها
رضا حبیب زاده
ارائه الگوی استفاده از هوش مصنوعی در حسابرسی داخلی
مهناز ذابح غازانی
تأثیر تنوع در ترکیب اعضای هیئت مدیره بر کارایی سرمایه گذاری
محسن بزرگی
Enhancing Audit Quality through Artificial Intelligence
Ebrahim Navidi Abbasspoor - Elnaz Maleki
Kinematic Synergy Reconstruction Analysis for Assessing Gait Complexity and Adaptability in Children With Cerebral Palsy
Mahshad Nazari Jeirani - Yasamin Azmi - Mahya Shojaeefard - Masoud Yousefi - Farzam Farahmand
Dynamic Classification of Resting-State EEG Using Adaptive Functional Connectivity in Mild Traumatic Brain Injury
Farzaneh Manzari - Peyvand Ghaderyan
A Comprehensive Review of Deep Learning Integration in Recommender Systems: Taxonomy, Challenges, and Future Directions
Saba Kheirkhah Kheirabadi - Dr. Azita Shirazipour - Dr.Seyed Javad Mirabedini
شناسایی ترس از ضرر در تصمیمات مالی با هوش مصنوعی
سیدسینا مرتضوی
مطالعه کامپوزیتهای سرامیکی هیدروکسیآپاتیت جهت استفاده در کاشتنیهای استخوانی
میلاد بدر - مهدیه سلطانعلیپور - جعفر خلیلعلافی
Early Alzheimer’s Detection with MRI-Based Deep Convolutional Neural Networks and Transfer Learning
Tabasom Musavi - M. J. Tarokh
more
Samin Hamayesh - Version 42.5.2