0% Complete
فارسی
Home
/
دومین کنفرانس ملی عصر انفجار تکنولوژی؛ هوش مصنوعی، تحولی در صنعت، تجارت و زنجیره تامین و دومین کنفرانس ملی علم داده در کاربردهای مهندسی
Modeling Customer Behavior in Online Stores Based on the RFM Model and Random Forest and SVM Algorithms
Authors :
Somayeh Ebrahimi Emamchai
1
Nayere Zaghari
2
1- دانشگاه آزاد تهران مرکزی
2- دانشگاه آزادتهران مرکزی
Keywords :
Customer Classification،Classification Performance Evaluation،Supervised Learning Algorithms،Machine Learning
Abstract :
With the increasing volume of purchase history and user activity in online shops, employing machine learning techniques alongside conventional methods like the RFM model has proven to be an effective approach for analyzing customer behavior. One of the key challenges in this area is accurately identifying important customers and the limited use of vast data for marketing decisions. This paper will propose a hybrid methodology that integrates RFM scores with supervised machine learning models—Random Forest and Support Vector Machine (SVM)—to provide a precise method for classifying online store customers. For this purpose, actual data were retrieved from the Kaggle website, and after processing, RFM values were calculated. Subsequently, Random Forest and SVM algorithms were utilized to categorize customers into high-value, medium-value, and low-value segments. The results highlighted that the Random Forest model achieved an accuracy of 92.6, while the SVM model reached 90.38, indicating strong performance in customer classification. The performance of the models was assessed based on data mining metrics such as accuracy, precision, recall, F1-score, and AUC. The hybrid model proposed here can effectively support marketing decisions, enhance customer experience personalization, and increase conversion rates and client loyalty in e-commerce environments. model proposed here can effectively support marketing decisions, enhance customer experience personalization, and increase conversion rates and client loyalty in e-commerce environments. while the SVM model reached 90.38, indicating strong performance in customer classification. The performance of the models was assessed based on data mining metrics such as accuracy, precision, recall, F1-score, and AUC. The hybrid model proposed here can effectively support marketing decisions, enhance customer experience personalization, and increase conversion rates and client loyalty in e-commerce environments.
Papers List
List of archived papers
تحلیل کاربردی الگوریتم کلونی مورچگان چندهدفه در حل مسائل بهینهسازی چندهدفه
ملیحه نیک سیرت
مخابرات و اینترنت اشیا: زیرساختهای نوین برای اقتصاد دیجیتال
سجاد یوسفی - مریم پورنجف - آمنه احمدی - شکوفه گرینی - حسنا هاشم بیگی
چارچوب سلسلهمراتبی مبتنی بر مدل انتشار شرطی و شبکه پیشبینیکننده برای تولید و بازشناسی توامان حالات چهره
علی محمدپزنده - عمادالدین فاطمیزاده
بررسی تأثیر بالقوه فناوری بلاکچین بر کاهش مدیریت سود در شرکتهای بورسی: یک تحلیل مبتنی بر نگرش کارشناسان و متخصصین
ضرغام داداش زاده
مدیریت زنجیره تأمین پایدار، اقتصادهای نوظهور، فناوری بلاکچین، دادههای مکانی، شفافیت، ردیابی و اعتماد اجتماعی
علیرضا خرمی
Dynamic Connectivity Reveals Transformative Power of Neurofeedback in Brain Functional Networks
Kasra Momeni - Gholam- Ali Hossein-Zadeh
“Analyzing the Impact of Emerging Technologies on Supply Chain Sustainability: A Case Study of the Food Supply Chain in the Post-COVID Era”
Mahdi Rezaei - Salman Vali mohammadi
Vibration-Based Assessment of Dental Implants: A Finite Element Study on Bone Quality and Boundary Conditions
Fatima Wayzani - Mohammadjavad (Matin) Einafshar - Ata Hashemi
پیشبینی نمرات دروس دانشگاهی با استفاده از الگوریتم رگرسیون خطی در یادگیری ماشین
سجاد یوسفی - مریم پورنجف - هانیه شیری
Integration of High-Speed AFM Nanomechanical Profiling with Deep Spatiotemporal Learning for Early Response Assessment and Tumor Stage Prediction in Oncolytic Virotherapy
َAlireza Haghighatjoo - Fatemeh Noori - Peyman Afshari Bijarbaneh - Seyed Amirhossein Mousavi
more
Samin Hamayesh - Version 42.4.1