0% Complete
فارسی
Home
/
سی و دومین کنفرانس ملی و دهمین کنفرانس بین المللی مهندسی زیست پزشکی ایران
Development of an Explainable Random Forest-Based Algorithm for EEG-Based Sleep–Wake Classification Toward Sleep Apnea Detection
Authors :
Pargol Sharifi
1
Mohammad Fakharzadeh
2
1- دانشگاه صنعتی شریف، تهران، ایران
2- دانشگاه صنعتی شریف، تهران، ایران
Keywords :
Polysomnography،EEG signal،Sleep stage classification،Sleep apnea detection،Random Forest،Machine learning
Abstract :
Automatic sleep stage classification allows separating sleep stages without human experts. Many existing algorithms rely on multi-channel physiological signals such as EEG, EOG, and EMG. However, because of the complex equipment and required expertise, these methods usually need specialized laboratory settings. Therefore, developing a high-accuracy classification algorithm using a single signal remains a key challenge in sleep research, as it could enable portable devices and home-based sleep monitoring systems. Sleep stage classification is essential for detecting and managing sleep disorders such as sleep apnea. This study presents an optimized and clinically interpretable pipeline for sleep stage classification and apnea detection using EEG signals. The proposed approach is based on a simple, interpretable Random Forest framework and is intended to serve as a valuable tool for both clinical and research-oriented applications in sleep apnea detection. It integrates optimized preprocessing, data cleaning, algorithmic optimization, and class balancing to enhance accuracy and interpretability. Notably, our optimized Random Forest pipeline outperforms more complex deep-learning models, especially on 6-class sleep staging, sleep–wake discrimination and Apnea detection. The proposed method achieved accuracy, sensitivity, and specificity of 99.68%, 97.59%, and 99.30%, respectively, for distinguishing sleep from wakefulness, and 87.18%, 85.19%, and 89.16%, respectively, for apnea detection.
Papers List
List of archived papers
Designing a Machine Learning Model with LSTM and CNNs to Make the Quality Control Process of Liquefied Gas Tankers Intelligent
Raha Pakzad
کاربرد هوش مصنوعی (AI) و رباتیک پیشرفته و رباتهای هوشمند و اتوماسیون در صنعت خودروسازی ایران (مطالعه موردی: شرکت ایرانخودرو)
حسین بوذری
محاسبات کوانتومی در عمل: از تئوری تا پیادهسازی تجاری
محمد عادلی نیا
نقش بازاریابی هوش مصنوعی در عملکرد استراتژیک با تاکید بر قصد خرید مصرف کننده در سایتهای فروش انلاین
اسماعیل محبی کندسری
A Combined Time-Frequency and Common Spatial-Spectral Pattern Approach for EEG-Based Motor Imagery Classification
Reza Nejati - Hamed Danandeh Hesar
Predicting Sleep Efficiency and Apnea Index Using ECG-Derived and Sleep Quality Features: A Machine Learning Approach
Mahla Khodaverdi - Raheleh Davoodi
تأثیرات و اخلاقیات استفاده از هوش مصنوعی: شواهدی از هند
رعنا شهدآور - ثریا قربانپور کولانی جدید - فاطمه حضرتی پور
Biomechanical Contrast Between Native and Decellularized Triple-Negative Breast Tumors in Mice
Mohammad Javad Farjam - Saman Asadi - Ashkan Azimzadeh - Saeid Amanpour - AbdolMohammad Kajbafzadeh - Mohammad Ali Nazari
Conductive Hydrogels in Biomedical Engineering: Current Status and Challenges
Elham Amiraslani - Zahra Mohammadi
A Real-Time Integrated Framework for Face Detection, Gender, and Emotion Recognition Using Convolutional Neural Networks
Mostafa Asgarinejad - Elias Ebrahimzadeh - Vida Mirabolfathi - Lila Rajabion - Hamid Soltanian-Zadeh
more
Samin Hamayesh - Version 42.4.1