0% Complete
فارسی
Home
/
سی و دومین کنفرانس ملی و دهمین کنفرانس بین المللی مهندسی زیست پزشکی ایران
Multiclass ICU Length-of-Stay Prediction Using Tree-Based Machine Learning Techniques
Authors :
Mahyar Mohammadian
1
Somayeh Afrasiabi
2
1- School of Electrical and Computer Engineering, Shiraz University
2- School of Electrical and Computer Engineering, Shiraz University
Keywords :
multi-class prediction،ICU length of stay،CatBoost،MIMIC III،Area Under Curve
Abstract :
Accurate prediction of intensive care unit (ICU) length-of-stay (LOS) is essential for patient management and resource planning. This study compares four tree-based machine learning models—Random Forest, XGBoost, LightGBM, and CatBoost—for multiclass LOS prediction using the MIMIC-III database. A total of 42,306 ICU stays were processed with 17 physiologic variables and discretized into 10 ordered LOS classes. Models were evaluated using quadratic-weighted Cohen’s kappa (κ) and Mean Absolute Deviation (MAD) to capture ordinal agreement and temporal accuracy. CatBoost achieved the best performance (κ = 0.444, MAD = 124.66 hours), effectively predicting both short- and longstay patients, which are operationally critical. XGBoost and Random Forest provided intermediate results, while LightGBM showed lower temporal precision (MAD = 164.19 hours). The results demonstrate that CatBoost’s ordered boosting strategy and native handling of categorical variables enable robust, interpretable predictions suitable for clinical and operational decision-making. These findings highlight the potential of tree-based machine learning to transform ICU LOS prediction from a retrospective metric into a proactive, reliable and interpretable tool for optimizing patient flow, resource allocation and decision-making. The study provides a foundation for future improvements using richer time-series data, multimodal inputs, and multicenter validation.
Papers List
List of archived papers
ارائه مدل یادگیری ماشین برای پیش بینی بازار مالی قیمت مسکن مبتنی بر یادگیری عمیق
زیبا نصیری - حسین اقبالی - محمدعلی اقبالی
بررسی رابطه بین توانایی مدیران و تاخیر قیمت سهام شرکتهای پذیرفتهشده در بورس اوراق بهادار تهران
حمیدرضا عزیزی
Assessing the Risk of Musculoskeletal Injuries of Workers at the Warehousing Workstation of Iran Tire Company
Mahshad Nazari Jeirani - Amirhossein Mohammadzadeh - Seyedeh Shokouh Azam Mirdamadi - Mohadeseh Sadat Shahangian - Navid Arjmand
ساخت داربست پلییورتان گرمانرم-هیدروکسی آپاتیت-اکسید گرافن احیا شده و بررسی رفتار زیستتخریبپذیری و زیستسازگاری آن
سید امیررضا زارعیان - سید مجتبی زبرجد
Impact of Dynamic and Static Sports on Growth and Anthropometric Characteristics (Height, Weight, BMI) in Children and Adolescents
Amin Partovi fard - Mahmoodreza Azghani - Sadra Jalali - Samin Asghari
مروری برسیاست های مالیاتی ارزهای دیجیتال : چالش ها و فرصت ها در دنیای اقتصاد نوین
نعمت رستمی مازویی - بهروز رادپور
Mapping Epileptic Networks: IED-Triggered Hemodynamic Changes Identified via Simultaneous EEG-fMRI Recordings
Elias Ebrahimzadeh - Mostafa Asgarinejad - Melika Akbarimehr - Hamid Soltanian-Zadeh
Preparation of a plant-based multifunctional nanocomposite hydrogel with conductivity and self-healing property for health monitoring
Nahid Salimiyan - Roya Sedghi - Sepehr Salighehdar
Development of Folic Acid-Conjugated Iron Oxide Nanoparticles Loaded with Doxorubicin via Arc Discharge: A Novel Approach for Synergistic Photothermal-Chemotherapy of Cancer Using Bacterial Cellulose-Polyvinyl Alcohol Hydrogel
Saeid Orangi - Soodabeh Davaran
بازنگری الگوریتمهای کشف گرههای فعال در شبکههای اجتماعی
مجید عبدالرزاق نژاد - مهدی خرد - محمدامیر جمالی
more
Samin Hamayesh - Version 42.5.2