0% Complete
فارسی
Home
/
سی و دومین کنفرانس ملی و دهمین کنفرانس بین المللی مهندسی زیست پزشکی ایران
Investigating the impact of arm swing on lower limb forces using machine learning techniques
Authors :
Mohammad Reza Seidgar
1
Hadi Farahani
2
Mostafa Rostami
3
Elham Naziri
4
Sadegh Madadi
5
1- دانشگاه شهید بهشتی
2- دانشگاه شهید بهشتی
3- دانشگاه صنعتی امیرکبیر
4- دانشگاه صنعتی امیرکبیر
5- دانشگاه صنعتی امیرکبیر
Keywords :
Arm Swing،Lower Limb،Force،Machine Learning
Abstract :
Introduction: Arm swing is a key component of gait mechanics, influencing joint stability, muscle forces, and locomotion efficiency. Understanding this relationship involves biomechanical complexity. This study investigates how different arm swing amplitudes affect lower limb muscle forces during walking. Methods: Motion capture data were collected from 20 healthy participants, with arm swings categorized as large (LA), normal (NA), and small (SA). Muscle force data for 41 muscles were analyzed using OpenSim software. Two approaches were used for classification: (1) statistical feature extraction with machine learning (ML) classifiers (logistic regression, SVM, decision tree, random forest, and XGBoost) and (2) time-series analysis using dynamic time warping (DTW) with weighted K-NN. Clustering was also performed using algorithms such as OPTICS, Hebbian learning, DBSCAN, SOM, BIRCH, and agglomerative clustering after applying Fourier Transform. Results: The best classification performance in the (LA-NA)-SA scenario was achieved by SVM and logistic regression, both reaching 98% accuracy. The DTW-based weighted K-NN approach achieved 84% accuracy. Clustering results showed the highest agreement in the (LA-NA)-SA scenario, with the Hebbian learning model achieving a silhouette score of 0.5 and ARI, AMI, and FMI values of 0.44, 0.52, and 0.69, respectively. Discussion: The results suggest that lower limb muscle force patterns are similar in normal and high arm swing ranges, while low arm swing produces distinct patterns, indicating increased muscular effort. Classification and clustering results were consistent and reinforced each other. Conclusion: This study contributes to the understanding of the importance of arm swing in gait mechanics, with implications for rehabilitation and ergonomic design. The integration of motion capture systems with ML models offers a novel and effective approach to human movement analysis.
Papers List
List of archived papers
مدیریت و فرصت های سرمایه گذاری
محمدرضا پژوهی
تاثیر ویژگی های کمیته حسابرسی و حسابرس داخلی بر به موقع بودن گزارشگری مالی
غلامعلی شریفی
Preparation and Characterization of Silicone Hydrogel Contact Lenses Based on TRIS-HEMA
Mahdiyeh Sedghi - Hakimeh Ghaleh - Sina Hajibababzadeh
Fixed-Frequency Impedimetric Detection of Sickle Cells Using Interdigitated Electrodes
َArezoo Savlani - Mobina Ghanbari - Mohammadjavad Bouloorchi Tabalvandi - Majid Badieirostami
Improving Generalization in MRI-Based Deep Learning Models for Total Knee Replacement Prediction
Ehsan Karami - Hamid Soltanian-Zadeh
کاهش توهم در مدلهای زبانی بزرگ جهت تولید اطلاعات درست
زهرا روزبهانی
Deep Brain Stimulation with a Computational both combined Biphasic and Monophonic square pulse Model for the Essential Tremor of CBGTHC Network of the Parkinson’s Disease
Shabnam Andalibi Miandoab - Nazlar Ghasemzadeh
بازاریابی محتوایی هوشمند: بازآفرینی تعامل کاربران و برندها با کمک هوش مصنوعی در رسانههای اجتماعی
پریسا جعفری - سیروس فخیمی آذر - سلیمان ایرانزاده - حسین بوداقی خواجه نوبر
Hierarchical Task-Structured GNN Meta-Learning for Few-Shot EEG Motor Imagery Decoding
Mohammad Armin Dehghan - Mohammad Mohammadianbisheh - Mohammad Bagher Shamsollahi
نشانهشناسی گزارشگری مالی مبتنی بر xbrl
داود روحی شاهعلی بگلو رضا روحی شاهعلی بیگلو
more
Samin Hamayesh - Version 42.4.1