0% Complete
فارسی
Home
/
سی و دومین کنفرانس ملی و دهمین کنفرانس بین المللی مهندسی زیست پزشکی ایران
Investigating the impact of arm swing on lower limb forces using machine learning techniques
Authors :
Mohammad Reza Seidgar
1
Hadi Farahani
2
Mostafa Rostami
3
Elham Naziri
4
Sadegh Madadi
5
1- دانشگاه شهید بهشتی
2- دانشگاه شهید بهشتی
3- دانشگاه صنعتی امیرکبیر
4- دانشگاه صنعتی امیرکبیر
5- دانشگاه صنعتی امیرکبیر
Keywords :
Arm Swing،Lower Limb،Force،Machine Learning
Abstract :
Introduction: Arm swing is a key component of gait mechanics, influencing joint stability, muscle forces, and locomotion efficiency. Understanding this relationship involves biomechanical complexity. This study investigates how different arm swing amplitudes affect lower limb muscle forces during walking. Methods: Motion capture data were collected from 20 healthy participants, with arm swings categorized as large (LA), normal (NA), and small (SA). Muscle force data for 41 muscles were analyzed using OpenSim software. Two approaches were used for classification: (1) statistical feature extraction with machine learning (ML) classifiers (logistic regression, SVM, decision tree, random forest, and XGBoost) and (2) time-series analysis using dynamic time warping (DTW) with weighted K-NN. Clustering was also performed using algorithms such as OPTICS, Hebbian learning, DBSCAN, SOM, BIRCH, and agglomerative clustering after applying Fourier Transform. Results: The best classification performance in the (LA-NA)-SA scenario was achieved by SVM and logistic regression, both reaching 98% accuracy. The DTW-based weighted K-NN approach achieved 84% accuracy. Clustering results showed the highest agreement in the (LA-NA)-SA scenario, with the Hebbian learning model achieving a silhouette score of 0.5 and ARI, AMI, and FMI values of 0.44, 0.52, and 0.69, respectively. Discussion: The results suggest that lower limb muscle force patterns are similar in normal and high arm swing ranges, while low arm swing produces distinct patterns, indicating increased muscular effort. Classification and clustering results were consistent and reinforced each other. Conclusion: This study contributes to the understanding of the importance of arm swing in gait mechanics, with implications for rehabilitation and ergonomic design. The integration of motion capture systems with ML models offers a novel and effective approach to human movement analysis.
Papers List
List of archived papers
ارائه مدل یادگیری ماشین برای پیش بینی بازار مالی قیمت مسکن مبتنی بر یادگیری عمیق
زیبا نصیری - حسین اقبالی - محمدعلی اقبالی
Multi-Level Driver Fatigue Detection Using EEG Signals with CNN–LSTM Models in a Compressed Sensing Framework
Sobhan Sheykhivand - Nastaran Khaleghi
Evaluation of Mechanical and Biological Properties of PCL-coated Magnesium Scaffolds
Fatemeh Sharifabadi - Sayed Khatiboleslam Sadrnezhaad
تحولات شهری و گردشگری هوشمند در شهرهای ایران
ریحانه بابائی - محمدعلی فیض پور
Multi-Objective Optimization of the Impeller of a mini Blood Pump: Balancing Outlet Pressure and Scalar Shear Stress
Reza Sahebi-Kuzeh kanan - Hanieh Niroomand-oscuii - Habib Badri Ghavifekr - Farzan Ghalichi
Recent Advances and Open Challenges in Explainable AI for Deep Learning-based Recommender Systems
Narjes Badpar - Azita Shirazipour - Seyed Javad Mirabedini
تهیه نانوحامل ژلاتین گالاکتوزیله شده با هدف کاربرد در دارورسانی هدفمند به بافت کبد سرطانی
مائده بخشی پور رشته رودی - امیرحسین شریفی - مریم رجب زاده - علی برادر خوش فطرت
تحلیلی بر آموزش حسابداری در ایران
محمد رضا پور علی - آرمان محجوب
بررسی عوامل موثر بر بهبود مالیات ستانی از اقتصاد دیجیتال در کشور (مورد مطالعه سازمان امور مالیاتی استان تهران)
نسار احمدی - ملک تاج ملکی اسکوئی
Optimization of the Mechanical Properties of PVA/Gelatin Hydrogel Reinforced with Polycaprolactone Nanofibers Using the Finite Element Method
Mohadeseh Nazouri - Iman Zoljanahi Oskui - Hadi Taghizadeh
more
Samin Hamayesh - Version 42.5.2