0% Complete
فارسی
Home
/
سی و دومین کنفرانس ملی و دهمین کنفرانس بین المللی مهندسی زیست پزشکی ایران
The Influence of Insertion-Induced Prestress and Viscoelastic Properties in Fixational Stability of Pedicle Screws in UHWMPE block: A Finite Element Study
Authors :
Ahmad Babazadeh Gh
1
Mohammadjavad (Matin) Einafshar
2
Ata Hashemi
3
1- Amirkabir University of Technology
2- Aalborg University, Denmark
3- Amirkabir University of Technology
Keywords :
Finite element analysis،Natural frequency،Modal analysis،Pedicle screw،UHMWPE،Viscoelasticity،Prestress،Prony series
Abstract :
Pedicle screws are critical components in spinal fixation systems, and the stiffness of the screw-bone interaction plays a crucial role in implant success. There are various ways to investigate screw-bone bonding strength, one of which is vibration-based diagnosis of screw-bone structure. While finite element modeling can reduce the time and give the ability to model different geometries and other conditions, properly modeling the vibration behavior of the screw inside bone comes with difficulties. This study investigates the influence of insertion-induced prestress and the viscoelastic properties of ultra-high molecular weight polyethylene (UHMWPE) bone-analog material on the natural frequency of a pedicle screw–block assembly using finite element analysis (FEA). Three models were developed: Model I (linear elastic without prestress), Model II (linear elastic with prestress), and Model III (viscoelastic without prestress). A 3D geometry of the screw and UHMWPE block was constructed, and frequency analysis was performed at three insertion depths (10 mm, 20 mm, and 30 mm). Simulation results were compared with previously published experimental data. Model I underestimated the natural frequency at all depths around 14-30%, while Model II, accounting for screw insertion-induced radial prestress, improved prediction accuracy, reducing errors down to under 18%. Model III, which captured UHMWPE's viscoelastic behavior using a Prony series, showed the closest agreement with experimental data, with errors under 7%. The results highlight the importance of modeling both viscoelasticity and insertion-related prestress to accurately predict dynamic behavior. These findings are useful for improving finite element modeling of modal analysis methods to investigate screw stability in spinal implants.
Papers List
List of archived papers
Enhancing Dental Disease Detection: Leveraging Swin Transformer and DenseNet with Attention-Guided Fusion in Dental Panoramic Imaging
Mahdieh Dehghani - Reza Aghaeizadeh Zoroofi
EEG Graph Construction: A Comparative Analysis for Classification Application
Kiana Kalantari - Mohammad Bagher Shamsollahi
An RZ-OOK Modulation Technique for Joint Data Rate and Output Power Tuning in Biomedical Applications
Tayebeh Azadmousavi - Esmaeil Najafiaghdam
From Handcrafted to Deep Representations: ReliefF and DANN Feature Fusion for EEG Emotion Classification
Zahra Mahdinezhad - Raheleh Davoodi
Effective Connectivity Alterations within the Cortico–Basal Ganglia Circuit Associated with Motor Skill Learning
Mohammad Rezaei - Alireza Talesh Jafadideh - Fariba Bahrami - Shahzad Tahmasebi Boroujeni
محاسبات کوانتومی در عمل: از تئوری تا پیادهسازی تجاری
محمد عادلی نیا
Electrochemical Biosensors Based on Polyaniline Nanostructures: An Analysis of Advances, Performance Challenges, and the Outlook for Smart Systems
Nasim Kharazminezhad - Ramez Pourahmad
پیاده سازی iot در زنجیره تامین، چالشها و فرصتها با در نظر گرفتن industry 4
مهدی رضایی - سلمان ولی محمدی
یادگیری عمیق برای ادراک رباتیک مقاوم در محیط های غیرساختارمند
سجاد یوسفی - مریم پورنجف - سمیرا حسینی - سوسن نصرتی - سمیه باقری
بررسی رابطه سیاست های تامین مالی شرکت و عملکرد شرکت بر افشای ریسک در شرکتهای پذیرفته شده در بورس اوراق بهادار تهران
بهاره فضلی
more
Samin Hamayesh - Version 42.4.1