0% Complete
English
صفحه اصلی
/
سی و دومین کنفرانس ملی و دهمین کنفرانس بین المللی مهندسی زیست پزشکی ایران
Predicting Sleep Efficiency and Apnea Index Using ECG-Derived and Sleep Quality Features: A Machine Learning Approach
نویسندگان :
Mahla Khodaverdi
1
Raheleh Davoodi
2
1- دانشگاه شهید بهشتی تهران
2- دانشگاه شهید بهشتی تهران
کلمات کلیدی :
Sleep efficiency،Apnea index،ECG،Machine learning،Feature selection
چکیده :
Sleep quality and obstructive sleep apnea profoundly influence cardiovascular function, cognition, and overall well-being, yet conventional monitoring approaches remain largely invasive or cumbersome, underscoring the imperative for streamlined, non-invasive alternatives. Herein, we present a machine learning framework that synergistically integrates electrocardiogram (ECG)-derived features with sleep quality metrics to forecast sleep efficiency and apnea-hypopnea index (AHI). Drawing upon the ECSMP (A Dataset on Emotion, Cognition, Sleep, and Multi-Modal Physiological Signals) dataset—encompassing recordings from 89 healthy participants—we curated a subset of 33 subjects whose data exhibited complete and unimpaired capture across all ECG-sleep modalities, thereby ensuring analytical fidelity; incomplete records from the remaining participants, attributable to recording artifacts or procedural inconsistencies, were judiciously excluded to uphold data integrity. From these selected recordings, 22 ECG-derived and sleep quality features were extracted and subsequently refined through recursive feature elimination (RFE) to mitigate redundancy and enhance predictive salience. We evaluated three regression models—Ridge Regression, Random Forest, and Gradient Boosting—employing subject-based 5-fold cross-validation to foster generalizability across individuals. For sleep efficiency, Ridge Regression attained a mean R² of 0.8734, indicating a high degree of explained variance; by comparison, Random Forest registered an R² of 0.2756 for AHI, which underscores the formidable obstacles in modeling sporadic apnea episodes amid constrained empirical resources. Feature importance scrutiny further illuminated wake hours and deep sleep ratio as preeminent correlates for sleep efficiency, complemented by deep sleep ratio and QRS amplitude for AHI. Collectively, this framework lays a promising foundation for non-invasive, individualized sleep monitoring, offering reliable estimates of sleep efficiency and preliminary insights into apnea patterns, albeit within the constraints of a modest sample size.
لیست مقالات
لیست مقالات بایگانی شده
A Comprehensive Review of Deep Learning Integration in Recommender Systems: Taxonomy, Challenges, and Future Directions
Saba Kheirkhah Kheirabadi - Dr. Azita Shirazipour - Dr.Seyed Javad Mirabedini
ارزیابی ساختار بازار حسابرسی در ایجاد ارزش افزوده اقتصادی در صنعت فولاد
کریم ستاری - محمدرضا عباسی استمال
Comparative Numerical Analysis of Spiral Geometries for Passive Particle Separation in Microfluidic Devices
Yunes Chakeralhoseini - Mohammad Mahdi Tekiyeh - Mahdi Moghimi Zand
کاربرد تخمین زمان و مدلسازی در زمانبندی بهینه وظایف کلان داده
آرمین اعیادی - آرزو جهانی
Improving Effectivity of repetitive Transcranial Magnetic Stimulation in Treatment of Amyotrophic Lateral Sclerosis by Designing New Protocol and Using Machine Learning
Ali Abedi - Gholamreza Moradi - Reza Sarraf Shirazi - Mehran Jahed
Machine Learning and Deep Learning Approaches for Fake News Detection: A Comprehensive Survey
Arian Hajati - Azita Shirazipour - Seyed Javad Mirabedini
تأثیر گردش سیاسی بر رفتار گزارشگری حسابرس با تأکید بر اندازه موسسه حسابرسی
فریور بلندنظر - مرتضی خانلاری
Edge-Based Personalized Information Retrieval for Mobile Users Leveraging Federated Learning
Ebrahim Ebrahimi - Hamed Nazarian - Amin Mohammadi - Morteza Mohammadi zanjireh
نقش مالکیت دولتی در ارتباط میان معیارهای غیرمالی و ریسک سقوط قیمت سهام
اکبر کنعانی - زهره نوروزی مرادلو - سیما فرزانه خلیفه لو - جابر نوشته زیوه
مروری بر ارتباط بهره وری نیروی انسانی و سرمایه و سیاست تقسیم سود شرکتها
لیلی روح بخش
بیشتر
ثمین همایش، سامانه مدیریت کنفرانس ها و جشنواره ها - نگارش 42.5.2