0% Complete
English
صفحه اصلی
/
سی و دومین کنفرانس ملی و دهمین کنفرانس بین المللی مهندسی زیست پزشکی ایران
Parkinson’s Disease Classification Using EEG and a Hybrid EEGNet–LSTM Architecture
نویسندگان :
Pouya Taghipour Langrodi
1
Amirsadra Khodadadi
2
Ali Sadat Modaresi
3
Mohammad Ahadzadeh
4
Mostafa Rostami
5
Sadegh Madadi
6
1- Professor, Department of Mechanical Engineering, Amirkabir University of Technology (Tehran Polytechnic)
2- Professor, Department of Mechanical Engineering, Amirkabir University of Technology (Tehran Polytechnic)
3- Professor, Department of Mechanical Engineering, Amirkabir University of Technology (Tehran Polytechnic)
4- Professor, Department of Mechanical Engineering, Amirkabir University of Technology (Tehran Polytechnic)
5- Professor, Department of Mechanical Engineering, Amirkabir University of Technology (Tehran Polytechnic)
6- Professor, Department of Mechanical Engineering, Amirkabir University of Technology (Tehran Polytechnic)
کلمات کلیدی :
Parkinson’s Disease،Electroencephalography،Machine Learning،Simon Conflict،Deep Neural Networks
چکیده :
Parkinson's disease (PD) is a common progressive neurodegenerative disorder that causes motor problems and cognitive-control problems that slowly get worse over time. These problems often show up years before a clinical diagnosis. To meet the need for objective early biomarkers, high-density electroencephalography (EEG) was recorded from 56 subjects (28 PD patients and 28 controls) while they did the Simon Conflict Task 200 times. This task tests how well people can stop themselves from responding when the conditions are the same or different. After a few preprocessing steps, which included 0.1–40 Hz band-pass filtering, common-average re-referencing, and independent component analysis (ICA) with ICLabel-guided artifact rejection, one-second epochs that were time-locked to the start of the stimulus were taken out. We then created a hybrid deep-learning framework that combined EEGNet for spatial feature extraction across 64 channels with three stacked bidirectional Long Short-Term Memory (LSTM) layers to capture temporal dynamics. Three shallow supervised models were used to classify the 64-dimensional spatiotemporal representations for each epoch: support vector machine (SVM), k-nearest neighbors (kNN), and an ensemble of SVM and Naïve Bayes. SVM did the best, with 89.7% accuracy, 91.8% sensitivity, and 85.0% specificity. This was a 5–10% improvement over traditional handcrafted-feature classifiers (p < 0.01). These results show that end-to-end spatial-temporal feature learning from task-evoked EEG is a powerful, non-invasive way to accurately separate Parkinson’s patients and the control group.
لیست مقالات
لیست مقالات بایگانی شده
An Automatic Pipeline for Simultaneous EEG-fMRI Artifact-removal (SEFA)
Farid Hosseinzadeh - Amin Mohammad Mohammadi - Mehrdad Anvarifard - ُSasan Keshavarz - Elias Ebrahimzadeh - Hamid Soltanian-Zadeh
A survey over deep learning methods for early detection in mammogram images
Zeinab Shirkool - Mohammad Ali Tabarzad - Reza Boostani
Optimal Control and Emergence of Kinematic Synergies in Underactuated Biped Locomotion
Mahdi Alipoor - Masoud Yousefi - Farzam Farahmand
شناسایی و تفکیک خودکار ضایعات بیماری مولتیپل اسکلروزیس در MRI با استفاده از معماری بهینه شده U-NET
مریم فتحعلی زاده اصل سرکندی - علی پورقاسم
Document Clustering Using Deep Pre-trained Language Model Embeddings for Information Retrieval
Mahdi Mohammadiha - Mohammad Hassan Sadreddini - Morteza Mohammadi Zanjireh
هزینه یابی بر اساس فعالیت(ABC) و پیامد های آن برای نو آوری باز
دکتر مهدی زینالی - رضا عباس زاده کر
Topology Optimization for Optimal Design of Human Tibial Fixation Plates toward Improving Biomechanical Compatibility
Aida Ahmadi - Taha Goudarzi
پلی از شبیهسازی به عمل: انقلاب بومی هوش مصنوعی در آموزش ایران
مهتاب کرمیانی - سیران معروفی
مروری بر روش های هوش مصنوعی توضیح پذیر
الهه محمدی - آزاده سلطانی
چارچوب سلسلهمراتبی مبتنی بر مدل انتشار شرطی و شبکه پیشبینیکننده برای تولید و بازشناسی توامان حالات چهره
علی محمدپزنده - عمادالدین فاطمیزاده
بیشتر
ثمین همایش، سامانه مدیریت کنفرانس ها و جشنواره ها - نگارش 42.4.1