0% Complete
English
صفحه اصلی
/
سی و دومین کنفرانس ملی و دهمین کنفرانس بین المللی مهندسی زیست پزشکی ایران
Fibroglandular Tissue Classification in Breast MRI: A Comparative Study of Automated Decision Strategies
نویسندگان :
Meysam Khalaj
1
Arvin Arian
2
Ala Torabi
3
Nasrin Ahmadinejad
4
Masoumeh Gity
5
Seyedeh Nooshin Miratashi Yazdi
6
Mohammad Pooya Afshari
7
Melika Sadeghi Tabrizi
8
Hamid Soltanian-Zadeh
9
1- University of Tehran
2- Tehran University of Medical Sciences
3- Tehran University of Medical Sciences
4- Tehran University of Medical Sciences
5- Tehran University of Medical Sciences
6- Tehran University of Medical Sciences
7- University of Tehran
8- University of Tehran
9- University of Tehran
کلمات کلیدی :
Fibroglandular Tissue Classification،Breast MRI،BI-RADS Assessment،Deep Learning،Shannon Entropy
چکیده :
Fibroglandular tissue (FGT) assessment in breast magnetic resonance imaging (MRI) is clinically important for breast cancer risk evaluation and is standardized in the Breast Imaging Reporting and Data System (BI-RADS) lexicon. While automated approaches have largely focused on segmentation, classification-based methods remain underexplored. Previous automated FGT classification studies have generally analyzed both breasts together, overlooking BI-RADS recommendations for side-specific evaluation and alternative strategies such as probability averaging or uncertainty-based rules. This study evaluates three assessment strategies: the conventional BI-RADS Maximum Rule, a novel Probability Averaging Rule to integrate bilateral information, and a novel Lower-Uncertainty Rule based on Shannon entropy to prioritize more confident predictions. These strategies were assessed using three diverse deep learning architectures, MobileNetV2, ResNeXt-26, and a hybrid ViT-ResNet, selected to analyze performance across models with different architectures and feature extraction mechanisms. The dataset comprised 654 pre-contrast 3D axial T1-weighted fat-saturated breast MRI scans, with each breast evaluated independently. Across ten independent runs, ViT-ResNet with Probability Averaging Rule achieved the highest test accuracy (0.85), F1 score (0.84), and Cohen’s kappa (0.78), while violin plot analysis showed that the Lower-Uncertainty Rule produced the lowest predictive entropy. Both proposed strategies consistently outperformed the conventional rule. The curated, expert-annotated dataset is publicly released to support reproducible research in this domain.
لیست مقالات
لیست مقالات بایگانی شده
Parkinson’s Disease Classification Using EEG and a Hybrid EEGNet–LSTM Architecture
Pouya Taghipour Langrodi - Amirsadra Khodadadi - Ali Sadat Modaresi - Mohammad Ahadzadeh - Mostafa Rostami - Sadegh Madadi
برنامه ریزی مالی به جای وحشت زدگی در بازارهای نوسانی
رویا باغ میرانی
Skin Thermomechanical Modeling: Assessing the Influence of Water and Ambient Air
Pezhman Namashiri - Akbar Allahverdizadeh - Fatemeh Khodadoost - Farid Vakili-Tahami
Induced Pluripotent Stem Cells -Derived Dopaminergic Neuron Transplantation for Parkinson’s Disease
Atena Parsaeian - Peyvand Naserisalehabad - Najmeh Najmoddin
بررسی تأثیر مالکیت نهادی بر رابطه بین انحراف استراتژیک شرکت از صنعت و گزارشگری پایداری
ناصر مست چمن - محمد پورکریم
راهکارهای عملی برای اجرای موفق پروژههای هوش مصنوعی در ایران
ملینا عبدلی
نوآوری در مدیریت ترافیک: راهبندهای هوشمند برای مسیرهای اختصاصی اتوبوسها
رضا حبیب زاده
A Review of Large Language Models in Medicine: Applications, Challenges, and Future Directions
Elham Shameli - Seyed Mohsen Mirhosseini
Finite Element Modeling of Bare-Tip and Cylindrical Diffusing Optical Fibers for Prostate Cancer Focal Laser Ablation
Sajjad Saadati Rad - Alireza Mehridehnavi - Seyed Mojtaba Karbalaee
طراحی چارچوب شخصیسازیشده درمان بیماری MS مبتنی بر یادگیری تقویتی عمیق SAC
مریم سبزه یان - محبوبه سبزه یان - امین نوری - ماندانا سادات غفوریان
بیشتر
ثمین همایش، سامانه مدیریت کنفرانس ها و جشنواره ها - نگارش 42.5.2