0% Complete
فارسی
Home
/
سی و دومین کنفرانس ملی و دهمین کنفرانس بین المللی مهندسی زیست پزشکی ایران
Parkinson’s Disease Classification Using EEG and a Hybrid EEGNet–LSTM Architecture
Authors :
Pouya Taghipour Langrodi
1
Amirsadra Khodadadi
2
Ali Sadat Modaresi
3
Mohammad Ahadzadeh
4
Mostafa Rostami
5
Sadegh Madadi
6
1- Professor, Department of Mechanical Engineering, Amirkabir University of Technology (Tehran Polytechnic)
2- Professor, Department of Mechanical Engineering, Amirkabir University of Technology (Tehran Polytechnic)
3- Professor, Department of Mechanical Engineering, Amirkabir University of Technology (Tehran Polytechnic)
4- Professor, Department of Mechanical Engineering, Amirkabir University of Technology (Tehran Polytechnic)
5- Professor, Department of Mechanical Engineering, Amirkabir University of Technology (Tehran Polytechnic)
6- Professor, Department of Mechanical Engineering, Amirkabir University of Technology (Tehran Polytechnic)
Keywords :
Parkinson’s Disease،Electroencephalography،Machine Learning،Simon Conflict،Deep Neural Networks
Abstract :
Parkinson's disease (PD) is a common progressive neurodegenerative disorder that causes motor problems and cognitive-control problems that slowly get worse over time. These problems often show up years before a clinical diagnosis. To meet the need for objective early biomarkers, high-density electroencephalography (EEG) was recorded from 56 subjects (28 PD patients and 28 controls) while they did the Simon Conflict Task 200 times. This task tests how well people can stop themselves from responding when the conditions are the same or different. After a few preprocessing steps, which included 0.1–40 Hz band-pass filtering, common-average re-referencing, and independent component analysis (ICA) with ICLabel-guided artifact rejection, one-second epochs that were time-locked to the start of the stimulus were taken out. We then created a hybrid deep-learning framework that combined EEGNet for spatial feature extraction across 64 channels with three stacked bidirectional Long Short-Term Memory (LSTM) layers to capture temporal dynamics. Three shallow supervised models were used to classify the 64-dimensional spatiotemporal representations for each epoch: support vector machine (SVM), k-nearest neighbors (kNN), and an ensemble of SVM and Naïve Bayes. SVM did the best, with 89.7% accuracy, 91.8% sensitivity, and 85.0% specificity. This was a 5–10% improvement over traditional handcrafted-feature classifiers (p < 0.01). These results show that end-to-end spatial-temporal feature learning from task-evoked EEG is a powerful, non-invasive way to accurately separate Parkinson’s patients and the control group.
Papers List
List of archived papers
نقشه راه آموزش هوش مصنوعی در ایران: از بومیسازی تا جهانیسازی
علی غلام نتاج - محمد عرفان رحمانیان کوشککی - امیدرضا حمیدی نیا - محمدمهدی افتخاری
بررسی اثرات تعامل و همکاری بین مدیران مالی ارشد شرکتها و مؤسسات حسابرسی بر کیفیت حسابرسی
موسی انصاری - محمد فرهادی مهر
Multi-Level Driver Fatigue Detection Using EEG Signals with CNN–LSTM Models in a Compressed Sensing Framework
Sobhan Sheykhivand - Nastaran Khaleghi
Enhancing Type 2 Diabetes Diagnosis with Evolutionary Algorithms and Machine Learning
Parisa Rezaei - Mohsen Saffar - Hamid Reza Naji - Mohammad Mehdi Faghih - Rasoul Nouriazar
Document Clustering Using Deep Pre-trained Language Model Embeddings for Information Retrieval
Mahdi Mohammadiha - Mohammad Hassan Sadreddini - Morteza Mohammadi Zanjireh
مهندسی مالی اسلامی: چارچوبی برای توسعه پایدار، نوآوری و عدالت اقتصادی در نظام مالی اسلامی
مهدی زینالی - رسول قوسینی - مرتضی نوروززادبناء
نقش حاکمیت شرکتی و شهرت در افشا مسولیت اجتماعی شرکت و عملکرد شرکت
رسول عبدی - سعید فردوسی
Prediction of cardiac arrhythmia via an improved hierarchical fused fuzzy deep learning
Arman Daliri - Nora Mahdavi
ساخت و انتقال ریزقطرات مغناطیسی در تراشه مایکروفلوئیدیک
نازنین پژوهیده - روزبه عابدینی نسب - مینا صوفی زمرد
بهینهسازی تنظیمات کاساندرا برای بهرهوری بیشتر در یادگیری ماشین
فاطمه قرشی پور - عباس میرزائی ثمرین - بابک نوری مقدم
more
Samin Hamayesh - Version 42.4.1