0% Complete
فارسی
Home
/
سی و دومین کنفرانس ملی و دهمین کنفرانس بین المللی مهندسی زیست پزشکی ایران
Parkinson’s Disease Classification Using EEG and a Hybrid EEGNet–LSTM Architecture
Authors :
Pouya Taghipour Langrodi
1
Amirsadra Khodadadi
2
Ali Sadat Modaresi
3
Mohammad Ahadzadeh
4
Mostafa Rostami
5
Sadegh Madadi
6
1- Professor, Department of Mechanical Engineering, Amirkabir University of Technology (Tehran Polytechnic)
2- Professor, Department of Mechanical Engineering, Amirkabir University of Technology (Tehran Polytechnic)
3- Professor, Department of Mechanical Engineering, Amirkabir University of Technology (Tehran Polytechnic)
4- Professor, Department of Mechanical Engineering, Amirkabir University of Technology (Tehran Polytechnic)
5- Professor, Department of Mechanical Engineering, Amirkabir University of Technology (Tehran Polytechnic)
6- Professor, Department of Mechanical Engineering, Amirkabir University of Technology (Tehran Polytechnic)
Keywords :
Parkinson’s Disease،Electroencephalography،Machine Learning،Simon Conflict،Deep Neural Networks
Abstract :
Parkinson's disease (PD) is a common progressive neurodegenerative disorder that causes motor problems and cognitive-control problems that slowly get worse over time. These problems often show up years before a clinical diagnosis. To meet the need for objective early biomarkers, high-density electroencephalography (EEG) was recorded from 56 subjects (28 PD patients and 28 controls) while they did the Simon Conflict Task 200 times. This task tests how well people can stop themselves from responding when the conditions are the same or different. After a few preprocessing steps, which included 0.1–40 Hz band-pass filtering, common-average re-referencing, and independent component analysis (ICA) with ICLabel-guided artifact rejection, one-second epochs that were time-locked to the start of the stimulus were taken out. We then created a hybrid deep-learning framework that combined EEGNet for spatial feature extraction across 64 channels with three stacked bidirectional Long Short-Term Memory (LSTM) layers to capture temporal dynamics. Three shallow supervised models were used to classify the 64-dimensional spatiotemporal representations for each epoch: support vector machine (SVM), k-nearest neighbors (kNN), and an ensemble of SVM and Naïve Bayes. SVM did the best, with 89.7% accuracy, 91.8% sensitivity, and 85.0% specificity. This was a 5–10% improvement over traditional handcrafted-feature classifiers (p < 0.01). These results show that end-to-end spatial-temporal feature learning from task-evoked EEG is a powerful, non-invasive way to accurately separate Parkinson’s patients and the control group.
Papers List
List of archived papers
بررسی رابطه عملکرد اجتماعی، زیست محیطی با عملکرد مالی شرکت های بورس اوراق بهادار تهران
بنفشه فهیمی نیری - حسین بوداقی خواجه نوبر
Design and Biomechanical Comparison of a Patient-Specific Anatomical Plate Versus Conventional Plate for Distal Humerus Fractures: A Finite Element Analysis
Fahime Rezazade - Azadeh Ghouchani - Maryam Amoochi
تاثیر عدم تقارن اطلاعاتی بر ارتباط بین متنوع سازی شرکتی و مالی سازی شرکت
احمد محمدی - سعید سودی - سونیا کیوان بد
بررسی رابطه بین تخصص مالی اعضای هیئت مدیره و سیاست تقسیم سود سهام و پیامدهای آن بر عملکرد آتی شرکتها
موسی انصاری - حمید عطایی مهر
مروری بر کاربردهای هوش مصنوعی درصنعت
امیرپاشا گرگان نژاد - لاریسا خدادادی
Neural Correlates of Reward and Punishment Processing During Gambling-Based Decision-Making: A Simultaneous EEG-fMRI Study
Elias Ebrahimzadeh - Amin Mohammad Mohammadi - Ahmad Hammoud - Lila Rajabion - Hamid Soltanian-Zadeh
تاثیر داراییهای نامشهود بر ارزش بازار شرکت؛ مطالعه موردی شرکت های صنایع شیمیایی بورس اوراق بهادار تهران
محمدرضا پژوهی
بررسی میزان آشنایی پزشکان با هوش مصنوعی
بهارک یادگار جمشیدی - آرزو صدری - یوسف صادقمند - علیرضا مجد خیابانی
Electrospun Chitosan-Gelatin/ZIF‑8 Nanofibers Scaffolds for Enhanced Wound Healing
Maryam Nosrati hashi - Maryam Tajabadi - Fateme Mirzajani - Alireza Khavandi
بهبود عملکرد سیستمهای شناسایی بدافزار با تلفیق شبکههای عصبی کانولوشن و الگوریتم جنگل تصادفی
بهزاد شاه پسندی - مجید مزینانی
more
Samin Hamayesh - Version 42.5.2