0% Complete
فارسی
Home
/
سی و دومین کنفرانس ملی و دهمین کنفرانس بین المللی مهندسی زیست پزشکی ایران
Design and fabrication of a cost-effective dry electrode for electroencephalography (EEG) signal acquisition
Authors :
Sobhan Sheykhivand
1
Nastaran Khaleghi
2
Lida Zareh Lahijan
3
1- Department of Biomedical Engineering Faculty of Interdisciplinary sciences and technologies Bonab, Iran
2- Department of Biomedical Engineering Faculty of Electrical and Computer Tabriz, Iran
3- Department of Biomedical Engineering Faculty of Electrical and Computer Tabriz, Iran
Keywords :
Bio-signal،Electroencephalography (EEG)،Dry Electrode،Contact Impedance،Sintering Method
Abstract :
An electrode is a conductive material that, on one side, is connected to a metallic component (such as a copper wire) and, on the other side, to a non-metallic component (such as a semiconductor, electrolyte, or vacuum) within an electrical circuit, establishing a connection between them. Biological electrodes provide a link between the human body and an electrical circuit, ultimately enabling the circuit to transmit useful data to a computer for analysis in various applications. Various types of electrodes are used for recording bio-potentials, which, based on the type of contact, can be classified into two categories: (1) wet electrodes and (2) dry electrodes. Wet electrodes require the application of conductive materials, such as conductive gel, before attachment to ensure optimal contact. However, these materials can cause inconveniences for both the patient and the operator, such as the need to prepare the skin (e.g., shaving) or to clean the site after signal acquisition. Consequently, dry electrodes have become increasingly popular due to their ease of use for both patients and operators. Nonetheless, one challenge of this type of electrode is the high electrical contact impedance caused by the absence of conductive substances. In this study, a low-cost dry electrode based on a silver-powder sintering process on a copper substrate was designed to enhance EEG signal quality and signal-to-noise ratio (SNR) without requiring conductive gels.
Papers List
List of archived papers
Development of an Explainable Random Forest-Based Algorithm for EEG-Based Sleep–Wake Classification Toward Sleep Apnea Detection
Pargol Sharifi - Mohammad Fakharzadeh
Development of a spiral microfluidic platform for predicting reduced mechanical damage in oocyte denudation
Ehsan Nabati - Maryam Saadatmand
چالش ها و راهکارهای استفاده از حسابداری منابع انسانی در عصر دیجیتال
پگاه نکواصل - حانیه سرافراز
The Impact of an Interactive Rehabilitation Protocol on Reorganization of Brain Networks in Children with Cerebral Palsy: A Pilot Study
Shahed Salehzehi - Mahdi Mollaei - Parisa Hosseini - Ali Koohian Mohammad abadi - Mohammad Ebrahim Hashemi - Hamid Reza Kobravi - Narges Hashemi - Mehran Beiraghi Toosi - Javad Akhondian
تاثیر سوء گیری مالی بر قابلیت مقایسه اطلاعات مالی با تاکید بر کیفیت حسابرسی
ابراهیم نویدی عباسپور - صالح بهروز گجین
رابطه هوش مصنوعی مدیریت و سازمانها
حسین بوذری
امنیت در سیستمهای توزیعشده: مقایسه رایانش ابری با فناوریهای سنتی و راهکارهای هوشمند مقابله با تهدیدات نوظهور
بهنام محمدلو - امین بابازاده سنگر
پردازش پیشرفته تصاویر برای شناسایی نوع سلول خونی: قطعهبندی، استخراج ویژگی و مدل گراف بر پایه نمونه گیری و تجمیع
حوریا خرمکی - سید مهدی صالحی - مهدیه قاسمی
تاثیر هوش مصنوعی بر توسعه اقتصاد حسابداری
نیما قاسم زاده شهرک - سعید انورخطیبی - سلمان عبدی
Implementation of advanced machine learning on synthetic data for estimation of SOH and degradation of lithium ion batteries.
Abolfazl Moghaddam - Shadi Habibi - Behnam Ghalami Choobar
more
Samin Hamayesh - Version 42.5.2