0% Complete
فارسی
Home
/
سی و دومین کنفرانس ملی و دهمین کنفرانس بین المللی مهندسی زیست پزشکی ایران
Improved Metric for Classification of Nearby Reaching Targets: A Distance-Weighted Accuracy Approach
Authors :
Zahra Dayani
1
Ali Maleki
2
Ali Fallah
3
1- دانشگاه صنعتی امیرکبیر(پلی تکنیک تهران)
2- دانشگاه سمنان
3- دانشگاه صنعتی امیرکبیر(پلی تکنیک تهران)
Keywords :
reaching target classification،upper-limb prosthesis control،spatially weighted accuracy،performance evaluation metrics،misclassification cost،motor intention decoding
Abstract :
Accurate classification of reaching targets is critical for upper-limb prosthesis control, rehabilitation robotics, and human-robot interaction. Traditional classification metrics assume uniform misclassification costs, ignoring the spatial relationships between targets. This overlooks significant performance degradation: misclassifications in safety-critical zones (e.g., near obstacles or humans) or those impairing functional outcomes (e.g., failing to grasp a cup) can be far more detrimental than spatially adjacent misclassifications—despite equivalent cost in standard metrics—leading to elevated user workload or complete task failure. To address this, we propose a spatially informed weighted accuracy metric. Misclassification costs are assigned based on the normalized Euclidean distance between the intended target and the misclassified position, penalizing distant errors more heavily than proximal ones. We demonstrate the utility of this metric first using synthetic confusion matrices achieving identical standard accuracy but exhibiting distinct spatial error patterns (far, near and random misclassification error patterns). We then apply it to a real-world reaching target prediction task, comparing two classifiers (Quadratic Kernel SVM vs. Gaussian Kernel SVM) with equal standard accuracy (63%). The proposed metric effectively discriminates classifier performance by imposing higher penalties on distant misclassifications (86.3% for Quadratic Kernel SVM vs. 85.5% Gaussian Kernel SVM), revealing significant differences masked by standard accuracy. Crucially, the metric explicitly normalizes against the worst-case misclassification cost inherent to the target layout, providing a spatially aware assessment of classification performance essential for real-world deployment.
Papers List
List of archived papers
A Telemedicine Approach to Therapist-Free VR Exposure Therapy for Acrophobia: A pilot study
Arya Gholipoor Hanizi - Samaneh Minakhani - Poorya Gholipoor
کاربرد هوش مصنوعی در بهینهسازی پردازش معاملات مالی: مدل های مفهومی و آیندهپژوهی
سجاد یوسفی - مریم پورنجف - لیلا حسین آبادی
بررسی تاثیر اندازه شرکت بر رابطه حاکمیت شرکتی خوب و عملکرد شرکت
یعقوب اقدم مزرعه - اشرف عارف نژاد
تبیین ابعاد و مؤلفههای مؤثر بر موفقیت مالیات کسب و کارهای نوپا مبتنی بر قابلیتهای نوآورانه با رویکرد هوش مصنوعی در شرایط اقتصاد امروز
حسین بوذری
بررسی نقش هوش مصنوعی در بهینهسازی تجربه کارکنان و تقویت برند کارفرمایی در صنعت برق ایران
حسن آذری - وحیدرضا میرابی - داریوش غلامزاده
مدل ترکیبی مبتنی بر DenseNet، الگوریتم ژنتیک و GAN برای تشخیص آلزایمر از تصاویر MRI
محمد قنبری صباغ - محسن کرمی طلایی
تاثیر پیچیدگی وظیفه بر عملکرد حسابرسان با تأکید بر جنبه های فردی و معنوی
حیدر محمدزاده سالطه - هانیه کریم زاده
بررسی تأثیر ریسک اطلاعات مالی و بندهای تعدیلی حسابرسی بر وجوه هیئتمدیره مشترک در شرکتهای پذیرفته شده در بورس اوراق بهادار تهران
حمیدرضا عزیزی - عرفان تخستین حلم
Digital Technology and Supply Chain Transformation: A Qualitative and Analytical Approach
Elnaz Shakerifar
کاربرد هوش مصنوعی در حملات سایبری: یک مرور تحلیل
سجاد یوسفی - مریم پورنجف - رویا شیخی زاده - زینب بازپور
more
Samin Hamayesh - Version 42.5.2