0% Complete
فارسی
Home
/
سی و دومین کنفرانس ملی و دهمین کنفرانس بین المللی مهندسی زیست پزشکی ایران
Improved Metric for Classification of Nearby Reaching Targets: A Distance-Weighted Accuracy Approach
Authors :
Zahra Dayani
1
Ali Maleki
2
Ali Fallah
3
1- دانشگاه صنعتی امیرکبیر(پلی تکنیک تهران)
2- دانشگاه سمنان
3- دانشگاه صنعتی امیرکبیر(پلی تکنیک تهران)
Keywords :
reaching target classification،upper-limb prosthesis control،spatially weighted accuracy،performance evaluation metrics،misclassification cost،motor intention decoding
Abstract :
Accurate classification of reaching targets is critical for upper-limb prosthesis control, rehabilitation robotics, and human-robot interaction. Traditional classification metrics assume uniform misclassification costs, ignoring the spatial relationships between targets. This overlooks significant performance degradation: misclassifications in safety-critical zones (e.g., near obstacles or humans) or those impairing functional outcomes (e.g., failing to grasp a cup) can be far more detrimental than spatially adjacent misclassifications—despite equivalent cost in standard metrics—leading to elevated user workload or complete task failure. To address this, we propose a spatially informed weighted accuracy metric. Misclassification costs are assigned based on the normalized Euclidean distance between the intended target and the misclassified position, penalizing distant errors more heavily than proximal ones. We demonstrate the utility of this metric first using synthetic confusion matrices achieving identical standard accuracy but exhibiting distinct spatial error patterns (far, near and random misclassification error patterns). We then apply it to a real-world reaching target prediction task, comparing two classifiers (Quadratic Kernel SVM vs. Gaussian Kernel SVM) with equal standard accuracy (63%). The proposed metric effectively discriminates classifier performance by imposing higher penalties on distant misclassifications (86.3% for Quadratic Kernel SVM vs. 85.5% Gaussian Kernel SVM), revealing significant differences masked by standard accuracy. Crucially, the metric explicitly normalizes against the worst-case misclassification cost inherent to the target layout, providing a spatially aware assessment of classification performance essential for real-world deployment.
Papers List
List of archived papers
Dual pH-and glucose-responsive terpolymer based on phenylboronic acid
FATEMEH GHASHGHAEE ZADEH - Mahdi Salami hosseini - Mehdi Salami Kalajahi
Finite Element Analysis of Ankle-Foot Orthosis (AFO): Influence of Shell and Insole Thickness Across Material Variants
Maryam Sheikhi - َAisan Rafiei - Nima Jamshidi
مدل یادگیری ماشین برای امنیت سایبری شهر هوشمند
علیرضا فولاد - محمد امین مقدادی - علی عبدلی - شایان مسگر
تاثیر مولفه های هوش معنوی بر قضاوت حرفه ای حسابرسان
علیرضا عظیمی ثانی
The Adaptive Approach of Ensemble Deep Learning Model in OCT Image Classification
Hamed Aghapanah Roudsari - Ali Ghaderian - Mrteza Choubin
تاثیر سوء گیری مالی بر قابلیت مقایسه اطلاعات مالی با تاکید بر کیفیت حسابرسی
ابراهیم نویدی عباسپور - صالح بهروز گجین
محاسبات کوانتومی در عمل: از تئوری تا پیادهسازی تجاری
محمد عادلی نیا
Parametric study on the separation of extracellular vesicles in a sheathless spiral microfluidic device
Mohammad Mahdi Abdi - Seyedeh Sarah Salehi
Accurate Brain Vessel Segmentation in T1-Weighted MRI based on UNETR: Improving Neurosurgical Planning
Fatemeh Gholizadeh - Mahdiyeh Rahmani - Ahmad Pour-Rashidi - Ebrahim Najafzadeh - Parastoo Farnia - Alireza Ahmadian
طراحی و توسعه دستیار هوشمند مشاوره پزشکان در دانشگاه علوم پزشکی همدان
حبیب اله تحسینی - جواد کشوری کامران
more
Samin Hamayesh - Version 42.4.1