0% Complete
فارسی
Home
/
سی و دومین کنفرانس ملی و دهمین کنفرانس بین المللی مهندسی زیست پزشکی ایران
Goniometry and Electromyography Data Analysis for Knee Health Diagnosis using Machine Learning
Authors :
Mohammad-Reza Sayyed Noorani
1
Zahra Mahmoudi Anzabi
2
Sara Sharifi
3
1- University of Tabriz
2- University of Tabriz
3- University of Tabriz
Keywords :
Knee Health Diagnosis،Machine Learning،Feature Extraction،Goniometry،Surface Electromyography
Abstract :
In this study, we employed the Sánchez dataset [1] comprising synchronized knee goniometric measurements and surface electromyography (sEMG) recordings from major knee flexor and extensor muscles to develop a machine learning-based classification system for knee joint health assessment. The dataset included biomechanical data from 11 healthy controls and 11 participants with diagnosed knee pathologies. Our analysis focused only on the data collected during walking trials. Accordingly, training data prepared through kinematic monitoring of knee joint angles and subsequent segmentation of complete gait cycles - from initial heel-strike through terminal swing phase. Thus, we compiled 48 datasets from healthy controls and 173 datasets from participants with knee abnormalities. Each dataset included synchronized sEMG signals from four major muscles (rectus femoris, biceps femoris long head, vastus medialis, and semitendinosus) along with knee goniometry data, all of them were captured through complete gait cycles. Here, various combinations of statistical, temporal, and wavelet features using SVM, LDA, and KNN classifiers for knee health assessment were evaluated. Goniometric data alone achieved the best index with 97.7% accuracy (LDA/SVM models) when incorporating at least one feature from each type. For sEMG signal combinations, optimal performance (93.8% accuracy with LDA) was obtained using solely semitendinosus muscle data with complete feature sets. Comparative analysis revealed wavelet features as the least effective individually, while combined feature sets consistently yielded superior results. The sEMG signals from other individual muscles or their various combinations, regardless of feature selection approach, consistently demonstrated inferior classification performance.
Papers List
List of archived papers
بررسی تأثیر بالقوه فناوری بلاکچین بر کاهش مدیریت سود در شرکتهای بورسی: یک تحلیل مبتنی بر نگرش کارشناسان و متخصصین
ضرغام داداش زاده
Multi-transform diagnostic analysis based on gradient-based features for breast cancer detection in thermal imaging
Ainaz Daneshdoust - Sedigheh Ghofrani - Mahdi Eslami - Iman Ahanian
پلی از شبیهسازی به عمل: انقلاب بومی هوش مصنوعی در آموزش ایران
مهتاب کرمیانی - سیران معروفی
Impact of Dynamic and Static Sports on Growth and Anthropometric Characteristics (Height, Weight, BMI) in Children and Adolescents
Amin Partovi fard - Mahmoodreza Azghani - Sadra Jalali - Samin Asghari
تحول دیجیتال: چرا شرکت ها در برابر آنچه برای عملکرد پایدار نیاز است مقاومت
رعنا شهدآور - صبا کبیرخو - محدثه پوراصغر - ندا ستاری
Skin Thermomechanical Modeling: Assessing the Influence of Water and Ambient Air
Pezhman Namashiri - Akbar Allahverdizadeh - Fatemeh Khodadoost - Farid Vakili-Tahami
Development of an Explainable Random Forest-Based Algorithm for EEG-Based Sleep–Wake Classification Toward Sleep Apnea Detection
Pargol Sharifi - Mohammad Fakharzadeh
مسئولیت پذیری اجتماعی شرکت : بررسی و ترکیب نظریه ها
رعنا شهدآور - علی دلجوان اکبری - محمد زکی لو
Anastomosis Angle Effects in Beating-Heart Coronary Bypass Grafts: A Fluid–Structure Interaction Study
Mohammad Saleh Kazemi - Nasser Fatouraee - Aisa Rassoli
هوش مصنوعی در خودروهای خودران: چالشها و راهکارهای تصمیمگیری
مهدی مشایخی - محمد عادلی نیا - میلاد بهره مند
more
Samin Hamayesh - Version 42.5.2