0% Complete
فارسی
Home
/
سی و دومین کنفرانس ملی و دهمین کنفرانس بین المللی مهندسی زیست پزشکی ایران
Goniometry and Electromyography Data Analysis for Knee Health Diagnosis using Machine Learning
Authors :
Mohammad-Reza Sayyed Noorani
1
Zahra Mahmoudi Anzabi
2
Sara Sharifi
3
1- University of Tabriz
2- University of Tabriz
3- University of Tabriz
Keywords :
Knee Health Diagnosis،Machine Learning،Feature Extraction،Goniometry،Surface Electromyography
Abstract :
In this study, we employed the Sánchez dataset [1] comprising synchronized knee goniometric measurements and surface electromyography (sEMG) recordings from major knee flexor and extensor muscles to develop a machine learning-based classification system for knee joint health assessment. The dataset included biomechanical data from 11 healthy controls and 11 participants with diagnosed knee pathologies. Our analysis focused only on the data collected during walking trials. Accordingly, training data prepared through kinematic monitoring of knee joint angles and subsequent segmentation of complete gait cycles - from initial heel-strike through terminal swing phase. Thus, we compiled 48 datasets from healthy controls and 173 datasets from participants with knee abnormalities. Each dataset included synchronized sEMG signals from four major muscles (rectus femoris, biceps femoris long head, vastus medialis, and semitendinosus) along with knee goniometry data, all of them were captured through complete gait cycles. Here, various combinations of statistical, temporal, and wavelet features using SVM, LDA, and KNN classifiers for knee health assessment were evaluated. Goniometric data alone achieved the best index with 97.7% accuracy (LDA/SVM models) when incorporating at least one feature from each type. For sEMG signal combinations, optimal performance (93.8% accuracy with LDA) was obtained using solely semitendinosus muscle data with complete feature sets. Comparative analysis revealed wavelet features as the least effective individually, while combined feature sets consistently yielded superior results. The sEMG signals from other individual muscles or their various combinations, regardless of feature selection approach, consistently demonstrated inferior classification performance.
Papers List
List of archived papers
بررسی تاثیر اندازه شرکت بر رابطه حاکمیت شرکتی خوب و عملکرد شرکت
یعقوب اقدم مزرعه - اشرف عارف نژاد
مروری بر روشهای شناسایی و تشخیص غیرمستقیم لیتولوژی سازند با تاکید بر روشهای هوش مصنوعی
نگین فروزان - خالد معروفی - سید شهاب طباطباییمرادی
علم داده به عنوان شتابدهنده نوآوری در صنعت مهندسی
رامین احمدپور
تاثیر تمرین با تردمیل آبی بر کینماتیک پرش- فرود فوتسالیست های حرفه ای
صفورا قاسمی - مسعود گلپایگانی - امیرحسین نجیمی
محاسبات کوانتومی در عمل: از تئوری تا پیادهسازی تجاری
محمد عادلی نیا
نقش هوش مصنوعی در افزایش انطباق مالیاتی و مقررات مالی
مهدی ریسمان گشا
پیاده سازی iot در زنجیره تامین، چالشها و فرصتها با در نظر گرفتن industry 4
مهدی رضایی - سلمان ولی محمدی
اصول سرمایه گذاری پایدار در شهرداری ها
بهرام مظفر
مروری جامع بر کاربردهای هوش مصنوعی توضیح پذیر
زهرا تقی پور - پرویز قربانزاده - سمیرا کرامت طلاتپه - آذر ملازاده ایگدیر
How Geometric Asymmetry Impacts Aortic Valve Bioprosthesis Performance – A Finite Element Analysis
Reyhaneh Mosaferchi - Nasser Fatouraee
more
Samin Hamayesh - Version 42.4.1