0% Complete
فارسی
Home
/
سی و دومین کنفرانس ملی و دهمین کنفرانس بین المللی مهندسی زیست پزشکی ایران
Feature-Conditioned WGAN for Generating Alzheimer’s EEG: Enabling GAN-Based Synthesis Under Data Scarcity
Authors :
Parsa Bahramsari
1
Alireza Taheri
2
1- Social and Cognitive Robotics Lab, Department of Mechanical Engineering, Sharif University of Technology, Tehran, Iran
2- Social and Cognitive Robotics Lab, Department of Mechanical Engineering, Sharif University of Technology, Tehran, Iran
Keywords :
Alzheimer’s disease،Electroencephalography،Conditional Wasserstein GAN،Feature matching،Synthetic data generation
Abstract :
Alzheimer’s disease (AD) significantly impairs cognitive function, making early detection and personalized care crucial. Electroencephalography (EEG) provides a non-invasive, low-cost window into cortical oscillations and is sensitive to AD-related spectral slowing and reduced temporal complexity. However, acquiring high-quality EEG data is often limited by factors such as patient fatigue, session variability, and logistical challenges, especially in environments like socially assistive robots (SARs). These constraints make it difficult to gather sufficient data for training reliable deep models for AD detection. To address this challenge, we propose a feature-conditioned Wasserstein generative adversarial network (fc-WGAN) that generates class and subject specific EEG segments from minimal training data. We first analyze a broad set of time-domain and frequency-domain EEG features to identify those most discriminative between AD and cognitively normal groups. Notably, features like nonlinear energy and band powers consistently demonstrate high separability. fc-WGAN aligns the mean and variance of these features between real and generated EEG batches, enhancing physiological realism and class consistency. Starting from only 200 overlapping 3-second segments per subject, our method improves EEGNet classification accuracy from 87.5±4.5% to 96.2±4.4% by effectively augmenting the training dataset. These results underscore the power of feature-aligned generation in overcoming data scarcity and demonstrate the practical utility of fc-WGAN for SAR-based cognitive assessment and early AD detection in real-world settings.
Papers List
List of archived papers
Region-Specific EEG Channel-Based Emotion Detection using Bi-directional Deep Neural Networks
Mahdi Jafari Asl - Sina Shamekhi - Fatemeh Shalchizadeh
CRAFT-Flow: Cross-Attentional Refinement for Robust Optical Flow Estimation in Cardiac MRI via Deep Learning
Hamed Aghapanah Roudsari - Reza Ashiri Gudarzi - Morteza Choubin
مروری جامع بر کاربردهای هوش مصنوعی توضیح پذیر
زهرا تقی پور - پرویز قربانزاده - سمیرا کرامت طلاتپه - آذر ملازاده ایگدیر
A brief review of the applications of stem and mesenchymal cell-derived exosomes for targeted therapy and cancer drug resistance
Laleh Etemad-Ghazani - Zahra Etemadi - Reza Pashaei
Effective Connectivity Alterations within the Cortico–Basal Ganglia Circuit Associated with Motor Skill Learning
Mohammad Rezaei - Alireza Talesh Jafadideh - Fariba Bahrami - Shahzad Tahmasebi Boroujeni
کاربرد هوش مصنوعی در صنعت گردشگری ایران
سید عبدالحمید حسینی - نادیا السادات حسینی
پیشنهاد درمان شخصیسازیشده برای بیماران OCD با یادگیری تقویتی
سمیه حسینی زنوزی
پیاده سازی مسیر یابی هوشمند بر اساس انرژی برای شبکه حسگر بی سیم
حمداله مهرآیین
کاربرد هوش مصنوعی در کنترل کیفیت و بهره وری :رویکرد های علمی چالش ها و حاکمیت مسئولانه در صنعت
سجاد یوسفی - مریم پورنجف - مرضیه شریفی - سیده مبینا موسوی
Addressing Class Imbalance Using Difficulty-based Oversampling with Variance Control
Zahra Asgharzadeh Bonab - Sina Shamekhi
more
Samin Hamayesh - Version 42.5.2