0% Complete
فارسی
Home
/
سی و دومین کنفرانس ملی و دهمین کنفرانس بین المللی مهندسی زیست پزشکی ایران
EEG-based Schizophrenia Detection Using Spectral, Entropy, and Graph Connectivity Features with Machine Learning
Authors :
Nazila Ahmadi Daryakenari
1
Seyed Kamaledin Setarehdan
2
1- دانشکده برقوکامپیوتر، دانشگاه تهران
2- دانشکده برقوکامپیوتر، دانشگاه تهران
Keywords :
Artificial Intelligence،Bandpower،EEG،Functional Connectivity،Graph Features،Machine Learning،Multiscale Permutation Entropy،Schizophrenia Detection
Abstract :
Schizophrenia is a serious mental disorder that changes the way people think, perceive, and manage daily life. Getting the diagnosis right is critical for proper treatment, but in practice it is often difficult. Current evaluations depend mostly on a clinician’s judgment, and the overlap of symptoms with bipolar disorder or major depression makes the task even harder. EEG offers a safe and noninvasive way to study brain activity, yet no single EEG feature has been reliable enough to stand on its own. This makes it important to look at integrative approaches that bring together different aspects of brain dynamics. In this study, we analyzed EEG features to distinguish patients with schizophrenia from healthy controls. Spectral power was measured across δ, θ, α, β, and γ bands. Temporal irregularity was measured with Multiscale Permutation Entropy (MPE), its first application to EEG in schizophrenia. Functional connectivity was estimated with the weighted Phase Lag Index in θ, α, and β bands, followed by the extraction of graph measures including global efficiency, clustering coefficient, characteristic path length, and mean strength. These features were used to train Random Forest, Multi-Layer Perceptron, and Support Vector Machine classifiers. Among the models, Random Forest achieved the most reliable performance, reaching 99.7% accuracy under stratified 5-fold validation and 99.6% under leave-one-subject-out validation. Feature analysis showed that connectivity in θ and α bands contributed most strongly to classification. Topographic maps of θ, α, and β activity also revealed regional group differences. Overall, the results suggest that combining spectral, entropy, and connectivity measures provides a robust framework for EEG-based detection of schizophrenia. Such integrative approaches may support the development of reliable biomarkers and bring EEG closer to practical use in psychiatric care.
Papers List
List of archived papers
تحلیل نقش رایانش ابری در چابکی زنجیره تأمین
دکتر غلامرضا جمالی - توحید بهزادی فرد - حسن ایزدی فر
بررسی روش های تشخیص فیشینگ با استفاده از یادگیری ماشین
حامد منکرسی - غلامرضا احمدی
یشبینی فرار مالیاتی مؤدیان حقوقی با تاکید بر مولفههای اقتصادی، مؤدیان و حسابرسان مالیاتی؛ با تکیه بر هوش مصنوعی
حسین بوذری
کاربرد بیومکانیک و آنالیز راهرفتن در بهینهسازی درمان کودکان مبتلا به فلج مغزی: مرور ادبیات
علی جعفری - علیرضا هاشمی اسکویی - شقایق حسن زاده خانمیری
Alterations of Brain Activation Maps in Adults with ADHD During Risk-Related Decision-Making Evidence from the Balloon Analogue Risk Task
Bahar Kermani - Mahdi Mirzaee Barzegar - Alireza Shirazinodeh
یک سامانه هوشمند پشتیبان تصمیم مبتنی بر چندعامل برای طبقهبندی انواع کسبوکار
حسن ضیافت
Edge-Based Personalized Information Retrieval for Mobile Users Leveraging Federated Learning
Ebrahim Ebrahimi - Hamed Nazarian - Amin Mohammadi - Morteza Mohammadi zanjireh
Multi-Objective Optimization of the Impeller of a mini Blood Pump: Balancing Outlet Pressure and Scalar Shear Stress
Reza Sahebi-Kuzeh kanan - Hanieh Niroomand-oscuii - Habib Badri Ghavifekr - Farzan Ghalichi
نقش اینترنت اشیا و هوش مصنوعی در کاهش مصرف انرژی در شهرهای هوشمند
حسنا هاشم بیگی
حسابداری تغییرات اقلیمی و تأثیر آن بر گزارشگری مالی شرکتها
آرزو زمردپور - ارژنگ بنی سپهر - ثمن خسروی
more
Samin Hamayesh - Version 42.4.1