0% Complete
فارسی
Home
/
سی و دومین کنفرانس ملی و دهمین کنفرانس بین المللی مهندسی زیست پزشکی ایران
EEG-based Schizophrenia Detection Using Spectral, Entropy, and Graph Connectivity Features with Machine Learning
Authors :
Nazila Ahmadi Daryakenari
1
Seyed Kamaledin Setarehdan
2
1- دانشکده برقوکامپیوتر، دانشگاه تهران
2- دانشکده برقوکامپیوتر، دانشگاه تهران
Keywords :
Artificial Intelligence،Bandpower،EEG،Functional Connectivity،Graph Features،Machine Learning،Multiscale Permutation Entropy،Schizophrenia Detection
Abstract :
Schizophrenia is a serious mental disorder that changes the way people think, perceive, and manage daily life. Getting the diagnosis right is critical for proper treatment, but in practice it is often difficult. Current evaluations depend mostly on a clinician’s judgment, and the overlap of symptoms with bipolar disorder or major depression makes the task even harder. EEG offers a safe and noninvasive way to study brain activity, yet no single EEG feature has been reliable enough to stand on its own. This makes it important to look at integrative approaches that bring together different aspects of brain dynamics. In this study, we analyzed EEG features to distinguish patients with schizophrenia from healthy controls. Spectral power was measured across δ, θ, α, β, and γ bands. Temporal irregularity was measured with Multiscale Permutation Entropy (MPE), its first application to EEG in schizophrenia. Functional connectivity was estimated with the weighted Phase Lag Index in θ, α, and β bands, followed by the extraction of graph measures including global efficiency, clustering coefficient, characteristic path length, and mean strength. These features were used to train Random Forest, Multi-Layer Perceptron, and Support Vector Machine classifiers. Among the models, Random Forest achieved the most reliable performance, reaching 99.7% accuracy under stratified 5-fold validation and 99.6% under leave-one-subject-out validation. Feature analysis showed that connectivity in θ and α bands contributed most strongly to classification. Topographic maps of θ, α, and β activity also revealed regional group differences. Overall, the results suggest that combining spectral, entropy, and connectivity measures provides a robust framework for EEG-based detection of schizophrenia. Such integrative approaches may support the development of reliable biomarkers and bring EEG closer to practical use in psychiatric care.
Papers List
List of archived papers
کاربرد پردازش زبان طبیعی در مدلسازی و پیش بینی رفتار خرید آنلاین مصرف کننده
حمیده سیفی شجاعی - مرتضی محمودزاده - حسین بوداقی خواجه نوبر - ناصر فقهی فرهمند
Screws That Hold: Stability Analysis of Distal Tibial Fractures Using FEA and a Novel Fixation Index
Amirhossein Karami - Mohadese Rajaeirad - Mohamed Elfekky - Nima Jamshidi
Biomechanical Contrast Between Native and Decellularized Triple-Negative Breast Tumors in Mice
Mohammad Javad Farjam - Saman Asadi - Ashkan Azimzadeh - Saeid Amanpour - AbdolMohammad Kajbafzadeh - Mohammad Ali Nazari
حسابداری تغییرات اقلیمی و تأثیر آن بر گزارشگری مالی شرکتها
آرزو زمردپور - ارژنگ بنی سپهر - ثمن خسروی
Preparation of a plant-based multifunctional nanocomposite hydrogel with conductivity and self-healing property for health monitoring
Nahid Salimiyan - Roya Sedghi - Sepehr Salighehdar
Effects of laminectomy on active-passive spine loads: a musculoskeletal finite element modeling investigation
Aida Ahmadi - Navid Arjmand - Parisa Azimi
رویکردهای مدیریت مالی با استفاده از فناوریهای هوشمند
حسن هاتف - سید محمد عالی نژاد - سید جبار عالی نژاد
نقش هوش مصنوعی در افزایش انطباق مالیاتی و مقررات مالی
مهدی ریسمان گشا
بررسی تاثیر سرمایه فکری بر رشد و ارزش شرکت با تاکید بر عملکرد مالی
یعقوب اقدم مزرعه - فائزه هاشم زاده اصل
هیدروژلهای نانوکامپوزیتی تقویتشده با نانوالیاف آرامید عاملدار شده: راهبردی نوآورانه در راستای گسترش ساختارهای پیشرفته مورد استفاده در پزشکی بازساختی
فرهاد اسمعیل زاده - شهره مشایخان - اکبر شجاعی
more
Samin Hamayesh - Version 42.5.2