0% Complete
فارسی
Home
/
سی و دومین کنفرانس ملی و دهمین کنفرانس بین المللی مهندسی زیست پزشکی ایران
Fibroglandular Tissue Classification in Breast MRI: A Comparative Study of Automated Decision Strategies
Authors :
Meysam Khalaj
1
Arvin Arian
2
Ala Torabi
3
Nasrin Ahmadinejad
4
Masoumeh Gity
5
Seyedeh Nooshin Miratashi Yazdi
6
Mohammad Pooya Afshari
7
Melika Sadeghi Tabrizi
8
Hamid Soltanian-Zadeh
9
1- University of Tehran
2- Tehran University of Medical Sciences
3- Tehran University of Medical Sciences
4- Tehran University of Medical Sciences
5- Tehran University of Medical Sciences
6- Tehran University of Medical Sciences
7- University of Tehran
8- University of Tehran
9- University of Tehran
Keywords :
Fibroglandular Tissue Classification،Breast MRI،BI-RADS Assessment،Deep Learning،Shannon Entropy
Abstract :
Fibroglandular tissue (FGT) assessment in breast magnetic resonance imaging (MRI) is clinically important for breast cancer risk evaluation and is standardized in the Breast Imaging Reporting and Data System (BI-RADS) lexicon. While automated approaches have largely focused on segmentation, classification-based methods remain underexplored. Previous automated FGT classification studies have generally analyzed both breasts together, overlooking BI-RADS recommendations for side-specific evaluation and alternative strategies such as probability averaging or uncertainty-based rules. This study evaluates three assessment strategies: the conventional BI-RADS Maximum Rule, a novel Probability Averaging Rule to integrate bilateral information, and a novel Lower-Uncertainty Rule based on Shannon entropy to prioritize more confident predictions. These strategies were assessed using three diverse deep learning architectures, MobileNetV2, ResNeXt-26, and a hybrid ViT-ResNet, selected to analyze performance across models with different architectures and feature extraction mechanisms. The dataset comprised 654 pre-contrast 3D axial T1-weighted fat-saturated breast MRI scans, with each breast evaluated independently. Across ten independent runs, ViT-ResNet with Probability Averaging Rule achieved the highest test accuracy (0.85), F1 score (0.84), and Cohen’s kappa (0.78), while violin plot analysis showed that the Lower-Uncertainty Rule produced the lowest predictive entropy. Both proposed strategies consistently outperformed the conventional rule. The curated, expert-annotated dataset is publicly released to support reproducible research in this domain.
Papers List
List of archived papers
کاربرد رویکرد بازیابی اطلاعات در تحلیل داده های بیماران دیابتی
زهرا محمدی فرد چینی بلاغ
رابطه هوش مصنوعی مدیریت و سازمانها
حسین بوذری
بررسی تاثیر سرمایه فکری بر رشد و ارزش شرکت با تاکید بر عملکرد مالی
یعقوب اقدم مزرعه - فائزه هاشم زاده اصل
استفاده از هوش مصنوعی جهت تولید یک مقاله تحقیقاتی حسابداری: بررسی پیامدها
رعنا شهدآور - حسین قشلاق سفلائی - حسین عبداله زاده خانقاه
A Model for Predicting Customer Purchase Intentions in Digital Marketplace
Salman Nazari-Shirkouhi - Reihane Zarei Babaarabi - Mohammad Abdollahi
پیاده سازی iot در زنجیره تامین، چالشها و فرصتها با در نظر گرفتن industry 4
مهدی رضایی - سلمان ولی محمدی
اصول سرمایه گذاری پایدار در شهرداری ها
بهرام مظفر
مروری بر ترجمه زبان های ناشناخته یا باستانی با استفاده از یادگیری عمیق
علی عبدالعظیمی - سید حسن مرتضوی
کاربرد تخمین زمان و مدلسازی در زمانبندی بهینه وظایف کلان داده
آرمین اعیادی - آرزو جهانی
Alterations in Muscle Coordination During Different Gait Phases Following Knee Injury
Shaghayegh Hassanzadeh Khanmiri - Alireza Hashemi Oskouei - Peyvand Ghaderyan
more
Samin Hamayesh - Version 42.5.2