0% Complete
English
صفحه اصلی
/
سی و دومین کنفرانس ملی و دهمین کنفرانس بین المللی مهندسی زیست پزشکی ایران
Integration of High-Speed AFM Nanomechanical Profiling with Deep Spatiotemporal Learning for Early Response Assessment and Tumor Stage Prediction in Oncolytic Virotherapy
نویسندگان :
َAlireza Haghighatjoo
1
Fatemeh Noori
2
Peyman Afshari Bijarbaneh
3
Seyed Amirhossein Mousavi
4
1- دانشگاه آزاد اسلامی واحد مشهد
2- Genova University , italy
3- Genova University , italy
4- دانشگاه ازاد مشهد
کلمات کلیدی :
Oncolytic Virotherapy،Atomic Force Microscopy،Early Response Biomarkers،Deep Learning / CNN-LSTM،Nanomechanical Profiling
چکیده :
Oncolytic virotherapy has emerged as a promising therapeutic strategy in oncology, utilizing genetically engineered or naturally occurring viruses to selectively infect, replicate within, and lyse malignant cells while sparing normal tissues. Beyond direct cytolysis, oncolytic viruses stimulate antitumor immunity by releasing tumor-associated antigens and danger signals, thereby initiating systemic immune responses. However, clinical translation is limited by the lack of robust early-stage biomarkers for treatment response assessment and patient stratification. Conventional evaluation methods—imaging, molecular assays, and immunohistochemistry—often provide delayed or indirect feedback, restricting timely therapeutic optimization. Nanomechanical profiling of living cells offers a novel approach for real-time assessment of therapeutic efficacy. Atomic Force Microscopy (AFM) enables label-free, nanoscale measurement of cellular mechanical properties, including stiffness, elasticity, and surface topography, which dynamically change in response to cytoskeletal remodeling and therapeutic interventions. Recent advances in high-speed AFM, coupled with artificial intelligence (AI), allow automated, high-dimensional feature extraction from raw nanomechanical data. Deep learning frameworks, particularly hybrid convolutional neural network (CNN) and long short-term memory (LSTM) architectures, have been shown to accurately classify cancer-related phenotypes and detect extracellular vesicle signatures with AUC values exceeding 0.90. In this study, we present a novel framework combining high-speed AFM with a hybrid CNN–LSTM pipeline to assess early responses to oncolytic virotherapy. Using human tumor cell lines infected with clinically relevant oncolytic viruses (HSV-1, VSV, NDV), we demonstrate that nanomechanical signatures acquired within the first 24 hours reliably distinguish responders from non-responders with >95% accuracy and predict tumor stage with AUC values of 0.90–0.95. Responding cells exhibited early softening, increased nanovibrational activity, and membrane roughening, whereas non-responders displayed attenuated mechanical changes, providing distinct mechanobiological fingerprints of therapeutic efficacy.Our findings establish AFM–AI integration as a rapid, label-free, and non-destructive platform for early response monitoring and tumor stage prediction in oncolytic virotherapy. This approach surpasses conventional methods in speed, sensitivity, and specificity, offering a translational pathway toward real-time patient stratification and personalized treatment adjustments. The study lays the groundwork for further integration of mechanobiology-informed biomarkers with complementary omics and imaging modalities to advance precision oncology workflows.
لیست مقالات
لیست مقالات بایگانی شده
شناسایی عوامل تعیین کننده قصد انطباق مالیات با تاکید بر نظریه رفتار برنامه ریزی شده
نیما صدری نوبر زاد - پریسا صدری نوبر زاد
The role of data analysis and financial engineering in managing industrial projects with a circular economy approach
Mohammad Reza Taheri Oshtobin - Seyed Ali Ghamiloei
بررسی تاثیر حسابداری منابع انسانی بر عملکرد رقابتی استراتژیک شرکتهای کوچک و متوسط استان گیلان
ائلناز سیادتی
Optimal Control and Emergence of Kinematic Synergies in Underactuated Biped Locomotion
Mahdi Alipoor - Masoud Yousefi - Farzam Farahmand
پیاده سازی iot در زنجیره تامین، چالشها و فرصتها با در نظر گرفتن industry 4
مهدی رضایی - سلمان ولی محمدی
Modulation of EEG Connectivity by Insular Cortex Stimulation: Frequency-Specific Effects and Interoceptive Implications
Ramin Aghili Karampour - Alireza Fallahi - Reza Kazemi
پیشبینی جهت حرکت قیمت طلا در بازار فارکس مبتنی بر نمایانگرهای ایچیموکو با استفاده از روشهای سنتی یادگیری ماشین
محمد رزاقی - محمدحسین خسروی - فاطمه یوسف زاده
بررسی تاثیر مهندسی مالی و مدیریت ریسک بر مدیریت پروژه های ساخت عمرانی
محمد محسنی - جعفر نیکومنش - علی محمدی
Anastomosis Angle Effects in Beating-Heart Coronary Bypass Grafts: A Fluid–Structure Interaction Study
Mohammad Saleh Kazemi - Nasser Fatouraee - Aisa Rassoli
ساخت و مشخصه یابی چسب زیستالهام برپایه ژلاتین با اتصالات دوگانه آرژنین و اسید کافئیک برای هموستاز سریع
غزل یعقوبی - مهشید خرازیها
بیشتر
ثمین همایش، سامانه مدیریت کنفرانس ها و جشنواره ها - نگارش 42.4.1