0% Complete
English
صفحه اصلی
/
سی و دومین کنفرانس ملی و دهمین کنفرانس بین المللی مهندسی زیست پزشکی ایران
Feature-Conditioned WGAN for Generating Alzheimer’s EEG: Enabling GAN-Based Synthesis Under Data Scarcity
نویسندگان :
Parsa Bahramsari
1
Alireza Taheri
2
1- Social and Cognitive Robotics Lab, Department of Mechanical Engineering, Sharif University of Technology, Tehran, Iran
2- Social and Cognitive Robotics Lab, Department of Mechanical Engineering, Sharif University of Technology, Tehran, Iran
کلمات کلیدی :
Alzheimer’s disease،Electroencephalography،Conditional Wasserstein GAN،Feature matching،Synthetic data generation
چکیده :
Alzheimer’s disease (AD) significantly impairs cognitive function, making early detection and personalized care crucial. Electroencephalography (EEG) provides a non-invasive, low-cost window into cortical oscillations and is sensitive to AD-related spectral slowing and reduced temporal complexity. However, acquiring high-quality EEG data is often limited by factors such as patient fatigue, session variability, and logistical challenges, especially in environments like socially assistive robots (SARs). These constraints make it difficult to gather sufficient data for training reliable deep models for AD detection. To address this challenge, we propose a feature-conditioned Wasserstein generative adversarial network (fc-WGAN) that generates class and subject specific EEG segments from minimal training data. We first analyze a broad set of time-domain and frequency-domain EEG features to identify those most discriminative between AD and cognitively normal groups. Notably, features like nonlinear energy and band powers consistently demonstrate high separability. fc-WGAN aligns the mean and variance of these features between real and generated EEG batches, enhancing physiological realism and class consistency. Starting from only 200 overlapping 3-second segments per subject, our method improves EEGNet classification accuracy from 87.5±4.5% to 96.2±4.4% by effectively augmenting the training dataset. These results underscore the power of feature-aligned generation in overcoming data scarcity and demonstrate the practical utility of fc-WGAN for SAR-based cognitive assessment and early AD detection in real-world settings.
لیست مقالات
لیست مقالات بایگانی شده
A Combined Time-Frequency and Common Spatial-Spectral Pattern Approach for EEG-Based Motor Imagery Classification
Reza Nejati - Hamed Danandeh Hesar
طراحی زنجیره تأمین سبز با رویکرد هوش مصنوعی و سیاستهای ESG
علیرضا فولاد - سبحان معارفوند - حسین پورابراهیم گیل کلایه - علی ایل سعادتمند
3D Printing of Novel Bioactive Polycaprolactone Nanocomposites for Prospective Osteoporotic Bone Defect Engineering
Fateme Fathi - Hengameh Zolala - Farhad Esmailzadeh - Shohreh Mashyekhan - Irinia Kurzina
Electrochemical Biosensors Based on Polyaniline Nanostructures: An Analysis of Advances, Performance Challenges, and the Outlook for Smart Systems
Nasim Kharazminezhad - Ramez Pourahmad
تقویت عضلات چهار سر ران و اصلاح الگوهای حرکتی با استفاده از بیوفیدبک الکترومایوگرافی در بیماران مبتلا به مالتیپل اسکلروزیس (MS)
مهدی میری - احسان تهامی - گلاره ویسی
GPU-Accelerated GRAPPA: A Fast Implementation Using PyTorch for MRI Reconstruction
Mehrdad Anvari-Fard - Mahdi Bazargani - Mohammad Javad Heidari - Hamid Soltanian-Zadeh
ارتباط بین عملکرد پایداری و کارایی سرمایهگذاری با نقش تعدیلگری ارزش شرکت
مهدی زینالی - محمد کیانی - سونیا کیوان بد
Mapping Epileptic Networks: IED-Triggered Hemodynamic Changes Identified via Simultaneous EEG-fMRI Recordings
Elias Ebrahimzadeh - Mostafa Asgarinejad - Melika Akbarimehr - Hamid Soltanian-Zadeh
Predictive Modeling of Astronaut Skin Microbiome Changes Using Machine Learning on NASA Multi-Omics Data
Mahdi Ansari - Abolfazl Hajihashemi - Mohammad Rafienia
توربین بادی محور عمودی بهینهشده برای محیطهای شهری
سید جواد روده چی تبریزی - ثمر گلدوز
بیشتر
ثمین همایش، سامانه مدیریت کنفرانس ها و جشنواره ها - نگارش 42.4.1